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Abstract

This paper presents a new framework to help transform visual surveys of a natural environment into time–lapses. As

data association across year-long variation in appearance continues to represent a formidable challenge, we present

success with a map–centric approach, which builds on 3D vision for visual data association. We use a foundation

of map point priors and geometric constraints within a dense correspondence image alignment optimization to align

images and acquire loop closures between surveys. This framework produces many loop closures between sessions.

Outlier loop closures are filtered in the frontend and in the backend to improve robustness. From the result map, the

Reprojection Flow algorithm is applied to create time–lapses.

The evaluation of our framework on the Symphony Lake Dataset, which has considerable variation in appearance,

led to year–long time–lapses of many different scenes. In comparison to another approach based on using ICP plus a

homography, our framework produced more and better quality alignments. With many scenes of the 1.3 km environment

consistently aligning well in random image pairs, we next produced 100 time–lapses across 37 surveys captured

in a year. Approximately one third had at least 20 (out of usually 33) well-aligned images, which spanned all four

seasons. With promising results, we evaluated the pose error of misaligned image pairs and found that improving map

consistency could lead to even better results.
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1 Introduction

Visual surveys of a natural environment can lead to a large

collection of image sequences, which this paper may help

to transform into time–lapses. Figure 1 shows an example.

One survey collects images over the length of a natural

environment, which may consist of hundreds of unique

scenes. As multiple surveys are acquired, image sequences

start to form through the time elapsed at each scene. A

transformation from multiple visual surveys into time–lapses

connects the surveys and manifests the time elapsed through

a set of well–aligned images (in this paper, time–lapses are

presented after manually sorting them for the well–aligned

images) at each scene.

A considerable research operation to collect years of

image sequences of a natural environment may accumulate

visual conditions that stand in the way of producing time–

lapses. As changes in Nature add richness to a growing

collection of image sequences, they also obscure determining

which photos capture which scenes, and how images of the

same scene align with one another (due to the variation in

appearance between surveys, perceptual aliasing, and the

unstructured environment). We can extract the motion within

an image sequence, and we have pose priors from a GPS

receiver and a compass. Yet, we need some way to short the

variation in appearance of a natural environment and address

the high likelihood that many may be incorrect.

We take a map–centric approach based on the use of visual

SLAM (terms are defined and indexed in Fig. 2) which

can, due to position–based correspondence, provide map

point priors for robust data association. During a repeated

survey, if the cameras are well–localized, the map from

a different session can be projected onto the new images

to provide position–based—independent of appearance—

correspondence priors. Anything that keeps the same

position across observations may have them, given that there

are no large occlusions, a constraint that may be likely near

a similar viewpoint. In a natural environment, trees, rocks,

logs, and other objects that lack agency are prime examples.

The Reprojection Flow algorithm (Griffith and Pradalier

2016, also see Sec. 6) exploits, for example, reprojected

map points as priors to anchor dense correspondence. For

multiple surveys whose maps and trajectories are consistent,

the Reprojection Flow algorithm can be repeatedly applied

to image pairs of the same scene to create a time–lapse (as

we do in Sec. 8.5).

Given a way to get time–lapses from a consistent set of

maps and trajectories, the next question is: how can we make

multiple visual surveys of a large–scale natural environment

consistent? The connectivity among them may be important;

we may only be able to acquire a sparse subset of loop–

closures among a subset of the surveys. Yet, the variation

in appearance can lead to noisy loop closures. Visual data
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Figure 1. Depicting the transformation of unaligned, visual surveys of a natural environment into time–lapses using our approach.

This example shows 15 of 37 sessions and 18 of 100 scenes from our evaluation in Sec. 8. Each survey consists of a video and the

camera trajectory from a robot as it moved through the environment. Surveys from different dates are initially unaligned. Our

framework provided the ability to acquire loop closures across considerable variation in appearance, which was a part of a

complete pipeline to transform the surveys into time–lapses. left) A hand–selected, reference image from a particular scene and

survey is automatically found in the other surveys. The result set of images is shown bordered with the same color. There are 18

different sets. right) The images from two of the scenes aligned into time–lapses. Red squares denote misaligned images. Blue

squares denote reference images. Each manually sorted set of images compose a time–lapse.

association may only be effective between surveys captured

around the same time (e.g., a month). It may also be

effective across longer timelines (e.g., a year), to other

surveys captured in the same season. With multiple surveys

connected by loop–closures along a chain, loop closures

between surveys at the beginning and the end of the chain

may be needed to keep the ends from drifting apart. This may

give multi–session optimization enough information to bring

surveys into alignment. Thus, a map–centric approach may

need a maximized amount of accurate loop closures between

sessions.

This paper introduces a framework to assist a human

in transforming multiple visual surveys of a natural

environment into time–lapses. That is, our framework

computes the time–lapse of all the images at the same

scene, but they are presented after they are manually

sorted. We create a map–centric approach for obtaining loop

closures across challenging variation in appearance between

sessions. Our pipeline has three stages: 1) single–session

SLAM; 2) inter–session loop closure (ISLC) search; and

3) multi–session optimization. Rather than try to match

feature descriptors of individual landmarks across sessions, a

session’s landmarks are assumed to be time–dependent. Data

association occurs through dense correspondence. During

single–session SLAM (Sec. 4) a trajectory and a map are

acquired for each survey, which are independent (no shared

local image features and no loop closures) of those for other

surveys. During ISLC search (Sec. 5), surveys are connected

at the snapshots where dense image correspondence is

verified. A dense correspondence maps local image features

across surveys, from which localization can be performed to

acquire ISLCs, and in turn during multi–session optimization

(Sec. 7), multiple sessions be made consistent.

We evaluated our framework on a large dataset of surveys

of a 1.3 km natural environment (Sec. 3). Applying our

framework to each year of the dataset showed that a

large number of loop closures were produced. The map

consistency was evaluated by aligning random image pairs

from one year of 37 surveys and then manually labeling

their precision. In 1000 image alignments, our framework

outperformed an approach based on the use of ICP plus

a homography. With many scenes in the environment that

consistently aligned well, we next produced 100 time–lapses

at random scenes and found many of them to capture the

seasonal change. Poor image alignments were found to

occur where pose error reduced the accuracy of position–

based correspondence. Our results show that map point

correspondence priors and geometric constraints within a

dense correspondence image alignment optimization could

be used to achieve data association across the year–long

variation in appearance of a natural environment.

2 Related Work

Transforming visual surveys into time–lapses using a

consistent map touches on many challenging areas of

data association. We first describe related time–lapse work

(Sec. 2.1). We then touch on scalability and focus on

robustness in related work for visual data association

(Sec. 2.2 and 2.3) and backend optimization (Sec. 2.4

and 2.5). Prior work follows (Sec. 2.6).
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Method Index
Sec. 4) Single–Session SLAM Sec. 6) Reprojection Flow

6.1) Relative Pose Estimation:

Map

Trajectory

Verified Pose

Estimated Pose

Sec. 5) Inter–Session Loop–Closure (ISLC) Search 6.2) Viewpoint Selection:

Survey j
Survey k

(reference)

Field of View

5.1) Image Retrieval: 6.3) Map–Anchored Dense Correspondence:

Pose Search Range
Candidate Images
(Low–Resolution)

Reprojected
Map Points

5.2, 5.3) SIFT Flow with Alignment Constraints: 5, 6) The Resulting Set of ISLCs:

Flow Field ISLC

5.4) An ISLC From a Flow Field: Sec. 7) Multi–Session Optimization

Localized Pose ISLCs as Pose Priors

Figure 2. Primary methods indexed by section.

(Sec. 4) Simultaneous localization and mapping (SLAM) is the process used to acquire a map of 3D landmarks viewed over a

trajectory of 6D camera poses.

Single session refers to one particular deployment for one trajectory and map.

Multi–Session refers to multiple deployments, each with its own trajectory and map.

(Sec. 5) A loop closure specifies a 6D pose transform between nonconsecutive poses.

An inter–session loop closure (ISLC) is one between poses from two different sessions.

Loop closures are acquired using data association, the process of matching image data captured at different times.

(Sec. 5.1) Image retrieval finds an image for data association to a reference image using a preliminary data association step.

(Sec. 5.2) SIFT Flow is one particular dense correspondence approach to data association, which produces a flow field that

matches each pixel across an image pair.

(Sec. 5.3) Alignment constraints keep the flow field geometrically consistent.

(Sec. 5.4) Localization computes the 6D pose transform from the correspondences between two images.

(Sec. 6)

(Sec. 6.1)

Reprojection Flow boosts data association success rates and accuracy between surveys using the geometric

information in a map and poses, but it only applies near verified loop closures where the pose transforms can be

estimated between sessions.

(Sec. 6.2) Viewpoint selection finds an image for data association without a preliminary data association step.

(Sec. 6.3) A map–anchored dense correspondence is one with priors defined by sparse, reprojected map–points.

(Sec. 7) Multi–session optimization is the process that aligns multiple maps and trajectories using the ISLCs between them.
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2.1 Building Time–Lapses

The related work on building time–lapses most similar

to ours creates time–lapses from multiple surveys. Dong

et al. (2017) acquire a dense point cloud from each

session and then align them into a 4D point cloud for

precision agriculture of a peanut farm. Loop–closures are

acquired by applying a homography to find SIFT feature

correspondences (time interval < 1 week between sessions).

Milford et al. (2014) apply SeqSLAM to align images from

multiple image sequences of a natural environment. Image

pairs are aligned by applying an affine transformation to

the correspondences obtained using an adapted SeqSLAM

approach. Like Milford et al. (2014), our approach aligns

environment–long sequences of surveys, yet it is map–

centric like that of Dong et al. (2017), which provides much

of the robustness to variation in appearance.

Publicly available photos of popular landmarks also

capture a representative set for a transform into time–

lapses. Techniques for large–scale scene reconstruction from

mined internet photos adapt well into time–lapses as the

reconstruction is temporally ordered. Martin-Brualla et al.

(2015b,a) reconstruct scenes into time–lapses by building a

depth map for each viewpoint at each instance in time. A

color profile is computed for each 3D track, from which the

scene is reconstructed into a time–lapse. Zhou et al. (2015)

maximize correspondence consistency among the mesh of

correspondences, or ‘flowweb’, of an image collection to

align them. Our approach is also designed to make time–

lapses whose images are more closely aligned, and it uses

3D structure build them.

2.2 Scalable Visual Data Association

Although offline processing of surveys does not need

real-time scalability in visual data association for storage

and retrieval, scalability can become a bottleneck if

they are intractable (Sivic and Zisserman 2003). We

use pose priors and the co-visibility of map points

(Sec. 6.2) to mitigate the bottleneck. Related work has also

applied co-visiblity heuristics, namely for appearance–based

localization. Because visual features typically co-occur with

other visual features on the same objects, appearance–based

matching can exploit the distribution of features that may

be observed there (Cummins and Newman 2008). An image

is likely to match a query image if its visual features

are highly co-occurring with those of the query image, as

measured using mutual information in a Chow Liu tree.

In the formulation of covisibility graphs (Jones and Soatto

2011; Stumm et al. 2013), a query image is localized to

the node and its neighbors with the highest visual word

frequency–inverse document frequency.

A number of other approaches are formulated for map

maintenance to keep localization time small (Mühlfellner

et al. 2016; Dymczyk et al. 2015). Sattler et al. (2011) store

a descriptor for each 3D map point and localize as soon as

enough correspondences are found. Dymczyk et al. (2015)

acquire a summary map, of which landmarks are those likely

to be matched in future runs and trajectories are those that

capture novel structure. Linegar et al. (2015) prioritize the

sessions to which localization is attempted. In our approach,

the map of each survey is left as-is. But viewpoint selection

avoids any descriptor comparison when the relative poses

between sessions is known. Before a localization is acquired,

the image retrieval in Sec. 5.1 gets a boost in scalability

due to its low-res image alignment, similar to the idea to

use compact image templates to keep image comparison

fast (Milford and Wyeth 2012; Arroyo et al. 2015).

2.3 Robust Visual Data Association

Methods towards robust visual data association in outdoor

environments have overcome variation in appearance in

many ways (Lowry et al. 2016). Here, related work is

organized into six areas: 1) image feature matching; 2)

image sequence matching; 3) image modification; 4) dense

correspondence; 5) video alignment; and 6) exploiting

databases.

2.3.1 image feature matching New methods on local

features (Krajnik et al. 2015; Gálvez-López and Tardos

2012), image patches (McManus et al. 2014), and whole

images (Naseer et al. 2018) continue to find new ways to

achieve robustness for matching. State-of-the-art descriptors

for condition–invariant matching come primarily from neural

networks (Sunderhauf et al. 2015; Chen et al. 2017; Khaliq

et al. 2018; Garg et al. 2018). Although descriptors from

an off-the-shelf network have less power when evaluated

on a natural environment (Griffith and Pradalier 2017;

Gomez-Ojeda et al. 2015), a neural network that is

specifically designed and trained on images from a natural

environment can acquire invariance to the conditions of its

scenes (Gomez-Ojeda et al. 2015; Lopez-Antequera et al.

2017; Olid et al. 2018).

Although this paper does not use a neural network for

visual data association, it is complementary and unbiased

to the particular appearance–based approach. Higher data

association accuracy could allow for longer periods of time

between surveys. And across surveys where appearance–

based data association sparsely spans the range of variation

in appearance, where the training data is mismatched or is

limited, where perceptual aliasing is high and the relative

poses between surveys are accurate, or where verification

with a map is desired, reprojected map points could provide

anchors for visual data association.

2.3.2 image sequence matching Several approaches are

tailored for matching a sequence of images, which add

robustness to variation in appearance where single images

may be hard to match. Sequences of image templates can be

matched directly (Milford 2013; Arroyo et al. 2015), paired

up in a network flow (Naseer et al. 2018), or as nodes of

the data association graph (Vysotska and Stachniss 2016).

Much shorter sequences of descriptors from a CNN may

produce comparable accuracy (Facil et al. 2019). Naseer

et al. (2018) showed that image sequences can be matched

as a solution to the network flow problem through a cost

matrix of matched descriptors. Access to a GPS and compass

can provide, however, comparable coarse matching accuracy

across surveys for which the appearance is similar, and this

level of accuracy can be maintained year–round (Griffith and

Pradalier 2017).

2.3.3 image modification Images may also be modified

to account for the difference in condition between two
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different surveys. Removing the illumination (Corke et al.

2013) or other general factors (Lowry and Milford

2016) could improve feature matching in those changing

conditions (Corke et al. 2013). Two images can also be

made more similar by adding a particular condition to one

image Neubert et al. (2013). This paper avoids modifying the

visual appearance in favor of relying on the scene geometry

to gain robustness to variation in appearance.

2.3.4 dense correspondence Methods for dense corre-

spondence match every pixel across two images, which

inherently defines a transform between them, and which sub-

sequently can make them suited to visual data association in

a natural environment. In contrast to local image features or

image patches, whole images capture the manifold structure

of a scene (Oliva and Torralba 2006), a pattern that may

be more persistent across appearance change. In contrast to

whole image matching, a dense correspondence also defines

how one image transforms into another, which can make it

less sensitive to changes in viewpoint. Our paper builds on

dense correspondence to gain its advantages to variation in

appearance.

A dense correspondence may exist between two images

whether they capture the same scene or different scenes.

SIFT Flow demonstrated the dense correspondence of two

images by aligning whole images of SIFT features (Liu et al.

2011). Improvements to the methodology of SIFT Flow has

resulted in better computation time (e.g. Kim et al. 2013)

and matching capability (e.g. Kim et al. 2017a). As the

latest approaches have specifically focused on nonrigid dense

correspondence (e.g. Kim et al. 2017b, 2018), prior work

showed the integration of basic feature matching constraints

for rigid dense correspondence (Griffith and Pradalier 2016).

Sec. 5.3 shows how we add epipolar and forward–reverse

matching constraints to SIFT Flow to improve its matching

power for rigid dense correspondence.

2.3.5 video alignment Video alignment can simplify the

registration task as it allows for a few simplifying assump-

tions that reduce problem complexity. Video sequences cap-

tured while driving, for example, can be aligned by assuming

the camera is only rotated between frames and then estimat-

ing a homography between images (Diego et al. 2011). The

alignments may not be exact, however, because the camera

also often has a translation component. For video registration

meant for more general applications, Sand and Teller (2004)

demonstrated an approach towards video matching that esti-

mates a dense correspondence field using pixel matches and

optical flow. Like the work of Sand and Teller (2004), our

approach does not model occlusion boundaries, which can

limit image alignment quality as the viewpoint is changed.

2.3.6 exploiting databases In addition to curating the

data saved for localization (e.g., Le and Milford 2018),

there is also significant effort towards exploiting the large

amount of data to improve data association success rates.

A large source of data for localization is often available

due to prior experience. Churchill and Newman (2013)

showed that increased localization rates are possible if a new

‘experience’ of a scene is saved each time localization fails.

Multiple experiences are acquired where scene change is

more significant. Zhou et al. (2016) train a neural network to

infer the 3D model of an object given its query image, which

is subsequently used to infer the correspondence between

two images of the same object type. They showed that

correspondence across significant change in appearance can

be achieved if the 3D structure is known. Reprojection Flow

(Sec. 6) is based on the same principle: reprojected 3D points

can indicate how to anchor image alignment.

2.4 Scalable Backend Optimization

Scalability in backend optimization is achieved in a number

of ways (Cadena et al. 2016). Our multi-session optimization

in Sec. 7 breaks the optimization into subgraphs, motivated

by the scalability of Ni et al. (2007) and McDonald et al.

(2013). The divide-and-conquer approach of Ni et al. (2007)

was extended to multi-session SLAM by McDonald et al.

(2013). One anchor variable is defined between each pair

of sessions to represent the pose transform between them.

The formulation is best if the poses are locally well-

constrained. Our approach does not use anchor variables,

but instead optimizes over all the loop closures between

multiple sessions. Although several papers have shown

scalability for real–time operation by keeping the pose graph

small (Carlevaris-Bianco and Eustice 2013; Johannsson et al.

2013), or the optimization over it small (Sibley et al.

2010; Kaess et al. 2012), neither our implementation of

single–session SLAM (Sec. 4) nor our implementation of

multi–session optimization (Sec. 7) are used for real-time

operation.

2.5 Robust Backend Optimization

The backend optimization may also have to be robust to

outliers in data association due to the high possibility of

bad loop closures (Thrun et al. 2004; Ferguson et al. 2004).

Robustness can be explicitly added in an optimization over

loop closure constraints. Our multi–session optimization in

Sec. 7 employs expectation maximization, which has been

used to eliminate outlier loop closures of distributed mapping

algorithms Dong et al. (2015); Indelman et al. (2014). Other

techniques have optimized for the likelihood of a tree of

loop closure candidates (Ferguson et al. 2004), optimize for

clusters of inliers that share consensus with the odometry

(Latif et al. 2013), and optimize for graph consistency

(Graham et al. 2015).

A number of approaches also filter outliers by encoding

the uncertainty within the factor graph. Switchable

constraints are binary variables that can be added for each

loop–closure to filter poor ones (Sünderhauf and Protzel

2012), which have been extended so that outliers are

dynamically rejected (Agarwal et al. 2013), and to account

for multiple hypotheses of variables (Olson and Agarwal

2013). Carlone et al. (2014) implicitly modeled switchable

constraints in smart factors, which are an abstraction for the

support variables of an optimization problem. They replace

the support variables to provide a reduced set of constraints

on the set of target variables for optimization. In Sec. 4, we

include smart projection factors in the single–session SLAM

problem. Carlone and Calafiore (2018) gain robustness to

spurious measurements by modeling constraints using noise

distributions that account for large errors.
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2.6 Prior Work and this paper

This paper builds on and follows up to a line of prior work.

Rather than work towards the most efficient, scalable SLAM,

this work defines a way to address data association across the

variation in appearance of a natural environment, particularly

using the spatial and the temporal information which may be

provided by SLAM and multi–session optimization. Griffith

et al. (2015) found that SIFT Flow could be used for data

association across consecutive surveys. Griffith and Pradalier

(2017) showed SIFT Flow worked best among several

appearance–based methods and its limit in appearance–based

data association is around three months between surveys.

Griffith and Pradalier (2016) created the Reprojection Flow

algorithm, which uses a consistent map and poses to find

images of the same scene and then to anchor image

alignment to the final dense correspondence. We collected

the Symphony Lake Dataset (Sec. 3; Griffith et al. 2017),

which is the dataset used for all of our evaluations.

This paper addresses the transformation of multiple visual

surveys of a natural environment into time–lapses. It defines

a map–centric approach for obtaining loop closures across

challenging variation in appearance between sessions. Given

that appearance–based data association using SIFT Flow is

effective up to three months, a search for loop closures

is applied between pairs of surveys up to that time limit.

Between pairs of surveys, we apply our new pipeline for

visual data association (extending initial work in Griffith

and Pradalier 2016), which now integrates more filters and

geometric information to help maximize robustness to poor

loop closure candidates. Inconsistent loop closures are now

filtered during loop closure acquisition and a batch, multi-

session optimization. Time–lapses are now produced across

the full environment.

3 Symphony Lake Dataset

We describe and evaluate our work in the context of the

Symphony Lake Dataset (Griffith et al. 2017), which is a

collection of multiple surveys of a lakeshore. Our dataset is

presented here (rather than with the experiments in Sec. 8)

to provide an example reference, but also because some of

our methods would slightly change for a different dataset.

For example, we use a constant velocity assumption rather

than odometry constraints to perform SLAM (Sec. 4). As

we describe in Sec. 8.2 some changes can be made to help

generalize our approach to more datasets (e.g., from the

related work of Dong et al. 2017; Pradalier et al. 2019,

add a homography to pre-align images before extracting

descriptors. In the Symphony Lake Dataset, images of the

same scenes were likely captured near the same scale and

the same orientation). A discussion of the parameter values

we used is saved for Sec. 9.2.

3.1 Surveys

The Symphony Lake Dataset was collected as part of our

work towards long–term inspection and monitoring. The

dataset consists of 130 visual surveys of the shore of

Symphony Lake in Metz, France. Over 3.5 years of variation

in appearance were captured in the surveys, which were

collected roughly bi-weekly between 2014 Jan. 6 and 2017

Te
ch
no
po
le

M
etz

20
00

Figure 3. GTL’s Clearpath Kingfisher collected the surveys of

the Symphony Lake Dataset. It navigated the path shown as the

dotted line with its camera facing towards the shoreline.

Oct. 30. Each survey follows the perimeter of the approx. 1.3

km lakeshore and captures images of it from the perspective

of an unmanned surface vessel (USV). The GeorgiaTech–

Loraine Clearpath Kingfisher (see Fig. 3), a catamaran–style

USV, was deployed to collect each survey.

3.2 Robot

The GTL Kingfisher has a pan–tilt–zoom camera, with

which 704x480@10fps images are captured, a GPS (2.5 m

accuracy), a compass (10 degrees yaw accuracy), and an

IMU, with which its trajectory is captured, and a 2D laser

range–finder, with which its route along the shore is planned.

A state–lattice motion planner uses the output from the laser

to identify the best path. The path it chose was the one that

kept the robot 10 m from the shore. That distance was usually

far enough from the shore that it avoided collisions with

small debris, yet was usually close enough for it to capture

the scene well.

3.3 Data Collection

The data collected per survey, j, consisted of a sequence of

images, Ij = {Ijt }
nj

t=1, each associated with a measured 6D

camera pose, P j = {pjt}
nj

t=1. Images were initially captured

at 10Hz, but we use the 1 Hz downsampled set of nj frames

due to their significant overlap. The height stayed constant

within a survey, but it may have changed by a meter between

surveys. Because we had no way to measure that change,

however, it is approximated to zero for all the surveys.

Similarly, because the boat does not have odometry values

between successive poses, the velocity of the boat at each

frame, Zj = {zjt }
nj

t=1, is used for a kinematic constraint.

The acceleration as read from the IMU, Y j = {yjt }
nj

t=1, is

integrated over time to get the USV’s angular velocity, z
j
t .

3.4 Feature Extraction

Feature extraction per survey involved identifying keypoints,

Mj
t = {m

j,t
ψ }

nj,t

ψ=1, in an image, Ijt , and tracking them for

the duration they were visible (with an average accuracy of

approx. 3 pixels). An image was first subdivided into a 12x20
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Figure 4. Factor graph of the single–session SLAM

optimization problem. A colored node corresponds to a variable

to be optimized. A black node corresponds to a factor, which is

a constraint on the values of its connected variables. The dotted

line depicts a smart factor, which encapsulates a landmark

variable and its factors.

grid to identify where to extract new keypoints and where

existing keypoint tracks were likely to be found. Up to five

Harris corners in empty grid cells identified new landmarks.

Each was tracked using the Kanade–Lucas–Tomasi (KLT,

Lucas and Kanade 1981) feature tracking algorithm.

4 Single–Session Visual SLAM

The first step of survey processing consists in applying

single–session visual SLAM to acquire the trajectory

and the map for each survey. Although our framework

processes data from all the surveys, connections are not yet

acquired between them. Instead, each survey is optimized

independently of the others to map its keypoint tracks into

landmarks and to localize each pose at the frames along its

trajectory.

Single–session visual SLAM is formulated as a batch,

pose graph SLAM using the landmark feature tracks,

measurements of the camera poses, and prior knowledge

of the camera motion as shown in Fig. 4. Variable vertices

(colored) are the values to be optimized and factor vertices

(black) constrain the values of the variables they connect

to. The variables include the camera poses, x
j
t , the camera

velocities, v
j
t , and the landmark positions, l

j
i . The factors are

derived from measurements of the camera poses, p
j
t , of the

change in p
j
t and of the IMU, z

j
t , of the USV’s relatively

constant speed, y
j
t , and of the landmark feature tracks,Mj

t .

Our assumption that the boat moves with constant velocity

is used to form a kinematic constraint, u
j
t , which defines

the boat’s change in pose. Fusing the information in this

form enables a fast optimization for a low–error variable

assignment.

The optimized estimate of each pose, x̂
j
t , velocity, v̂

j
t ,

and landmark, l̂
j
i , in the factor graph is found using bundle

adjustment. Bundle adjustment simultaneously refines the

values of the 6D camera poses, the 6D camera velocities,

and the 3D landmark positions to reduce the total error.

The nonlinear minimization of error proceeds using the

Levenberg–Marquardt algorithm. The GTSAM framework

was utilized to perform this step (Dellaert 2012). Within

the same framework, smart factors were also utilized,

which employ the Schur complement to partition landmarks

from poses, and thus yield a more robust result in less

time (Carlone et al. 2014).

The result of this procedure for the jth survey is the set,

Πj = {X
j , V j , Lj}, for Xj = {x̂jt}

nj

t=1, V j = {v̂jt }
nj

t=1, and

Lj = {l̂ji }
Nj

i=1.

5 Inter–Session Loop–Closure (ISLC)

Search

After multiple surveys are collected and optimized,

connections are acquired between them during the inter–

session loop closure (ISLC) search (see Fig. 5). An ISLC

connects two surveys with a pose transform, which is

extracted from a pair of aligned images (a formal definition

is given in Sec. 5.4.4). In this framework, the dense

correspondence of two images defines their alignment

(Sec. 5.2). We use a dense correspondence approach

(i.e., SIFT Flow) to visual data association because 1) it

provides a potentially more accurate alignment function

(compared to e.g., a homography computed from local

image correspondences); and 2) it may short a large degree

of variation in appearance. Between surveys of a natural

environment, however, it can still fail to provide any accurate

correspondences. Therefore, we add to its power with a

pipeline of constraints to help filter and circumvent errors—

from the addition of alignment constraints (Sec. 5.3), to

outlier removal (Sec. 5.3.1 and 5.4.1), to the localization

setup (Sec. 5.4.2 and 5.4.3), and finally to localization

verification (Sec. 5.4.4). Section 6 presents Reprojection

Flow, which can provide map point correspondence priors

between two surveys once a loop–closure is found.

5.1 Image Retrieval

Data association between two surveys, j and k, begins with

image retrieval, which seeks the best candidate image, Ija,

from survey j at time a for data association to a reference

image, Ikb , from survey k at time b. It is implemented in

this work to reduce computations of full–resolution dense

correspondence (which can be computationally expensive)

that are likely inaccurate. The search first identifies the poses

x̂
j
p
..x̂

j
q
, from survey j near the pose x̂kb . For our dataset,

nearby poses are those within 5 m and 20 degrees of x̂kb . The

search then tests the corresponding image candidates, I
j
p
..I

j
q
,

for alignment. A low–resolution dense correspondence

(a good indicator of the full–resolution correspondence

quality) is computed for each pair {Ikb , I
j
γ}

q

γ=p
. This search

is parallelized. An image Ija is found if at least one

of {Ikb , I
j
γ}

q

γ=p
has a verified alignment (as defined in

Sec. 5.3.1). The one whose alignment is most verified with

the reference image is the one that is returned.

5.2 SIFT Flow

This paper uses SIFT Flow (Liu et al. 2011) to compute

dense correspondence, which consists of aligning whole

images worth of SIFT (Lowe 2004) features. The idea is

that, although some areas of an image are uninformative,

a matched scene manifold—as defined by SIFT features—

could anchor an alignment. Two images with very different

appearance would be aligned along the manifold, with the

uninformative regions taking values in the neighborhood it

defined. Thus, a SIFT feature is extracted for every pixel of
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Figure 5. Visual data association between (left) two surveys using (middle) inter–session loop closure (ISLC) search (Sec. 5) and

(right) Reprojection Flow when an ISLC is acquired (Sec. 6). Reprojection Flow is used up to three times without success before it

is disabled. The logic here specifies the search with Reprojection Flow in the forward direction, but it is also used in the reverse

direction. Also, the most recent ISLC is not necessarily between the times a− 1 and b− 1. See the text for details.

Ikb , which produces the SIFT image, Skb . Two SIFT images,

Skb , Sja, are what are to be aligned.

Image alignment is defined as an optimization using a

Markov Random Field (MRF). Each variable in the MRF

corresponds to a pixel of Skb . Edges connect the variables for

adjacent pixels. A pixel, q ∈ Skb , is assigned a flow w(q) =
{uq, vq}, where uq, vq ∈ [−h..h], and q + w(q) ∈ Sja. The

quality of a flow is measured in terms of the descriptor match

quality (data), how similar it is to the flow of adjacent pixels

(smoothness), and how large it is (regularization), as defined

by the alignment energy:

E(w) =
∑

q

min(|Skb (q)− Sja(q + w(q))|1, t) (1)

+
∑

r adj. to q

min(α|uq − ur|, d) +min(α|vq − vr|, d)

+
∑

q

ν|uq + vq|

The minimized alignment energy, E(
∗
w) is computed using

a coarse–to–fine alignment down an image pyramid with

four layers. The initial flow field, w, is of images that

are downsampled by a factor of 24. Whereas the flow

field doubles in size with successive layers, the hypothesis

space for each variable shrinks, which telescopes the

correspondence. The truncation term, t, has value equal to the

Prepared using sagej.cls
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Figure 6. Depiction of image alignment using SIFT Flow plus

alignment constraints (improvements we made to SIFT Flow). A

SIFT Image is computed for each of the two input images. Each

one is downsampled into an image pyramid with four layers.

Image alignment proceeds from the top layer of the image

pyramid down, with multiple iterations of alignment constraints

applied at the top layer. An alignment is verified in iteration 0. To

apply alignment consistency constraints, the forward flow field is

computed in even iterations; the reverse flow field the odd

iterations. Epipolar constraints are applied after iteration 0 and,

unlike the alignment consistency, are also applied in the larger

layers of the image pyramid.

median of the descriptor distances between Skb and Sja. The

other parameter values (α, ν, d, and h) are listed in Sec. 9

and match what we used in all prior work.

5.3 Alignment Constraints

We added alignment constraints to the SIFT Flow framework

to improve it in two ways: 1) to help identify whether

an alignment may be informative; and 2) to help keep

an alignment consistent with scene structure (see Fig. 6).

An informative alignment may be robust to noise, which

is a property that can be verified (Sec. 5.3.1). Without

verification, the alignment process is terminated. A verified

alignment can likely be, in turn, optimized. Alignment

consistency constraints (Sec. 5.3.2) and epipolar constraints

(Sec. 5.3.3) are generic feature matching constraints that we

adapted to SIFT Flow to optimize verified alignments.

5.3.1 Alignment Verification The robustness of an align-

ment is tested immediately after obtaining the low resolution

correspondence from the top of SIFT Flow’s alignment

pyramid. Noise is added to one image and the image pair

is aligned a second time to test how much of the dense

correspondence is retained. This is similar to the idea of

‘adversarial perturbation,’ wherein noise is added to an input

image to test the robustness of a neural network (see, e.g.,

Dvijotham et al. 2018). The second alignment verifies the

first one if a large percentage of the two dense correspon-

dences match, which indicates that information may have

been acquired (Sutton 2001; Stoytchev 2009). For our robot

and the environment it captured, a dense correspondence of

two images is verified if, after shifting one of the images

up and to the right three pixels and then re-aligning them,

at least 40% of the second dense correspondence matches

the first. Note that, as implemented, alignment verification

happens as part of image retrieval.

5.3.2 Alignment Consistency Constraints Verified align-

ments are optimized with the help of an alignment con-

sistency constraint. The consistency of an image alignment

is measured using the alignment in the reverse direction.

Because the dense correspondence is directional, that is,

from one image to the other, a somewhat different one may

be computed for the reverse direction. This may be likely

for highly self–similar scenes. Matching the correspondence

in the forward and the reverse directions may help reduce

perceptual aliasing.

The alignment consistency is implemented as an iterative

two–cycle correction in the low resolution stage of SIFT

Flow. There, several iterations are inexpensive. Pixels of the

sift image Skb are first matched to pixels of the sift image Sja,

then of Sja to Skb , and so on over at most 19 iterations. An

odd number is used to end up at the forward flow, with which

the next layer of the image alignment pyramid is initialized.

Fewer than 19 iterations are performed if the consistency

breaches 95% within one pixel. At that point the flow fields

in both directions are consistent with one another.

Each iteration includes a modification to Eq. 1 to correct

ambiguous correspondences. The data term of Eq. 1 is

appended with the value

cyc = 16× ||w(q)− wprev(q + w(q))||2. (2)

This term is the L2 distance between the correspondence of

the forward flows, w, and the flows of the previous iteration,

wprev , which are in the reverse direction. It is larger for pixel

correspondences that diverge from consistency with the flow

in the opposite direction. Its addition to the data term (rather

than its multiplication to that) gradually pulls the forward

and the reverse alignments into agreement.

5.3.3 Epipolar Constraints Verified alignments are also

optimized using an application of epipolar constraints.

Corresponding points between two images of the same,

static scene should fall on epipolar lines. The original

implementation of SIFT Flow lacked epipolar constraints.

Here, SIFT Flow’s lack of that constraint represents an

opportunity for us to exploit more information for static

dense correspondence.

Epipolar constraints guide image alignment after an initial

set of correspondences are acquired. The very first set

of correspondences is available after iteration 0 of the

two–cycle consistency correction. Epipolar constraints are

computed for each iteration thereafter using the previous

flow field. They are also computed for successively larger

layers of the image pyramid using the correspondences from

the last.

Fundamental matrix estimation using RANSAC defines

the epipolar constraint for each pixel. The data term of Eq. 1

is multiplied with the value

epi ∝ 1−N (µ, δ), (3)
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where µ is the L2 distance to the epipolar line from q + w(q)
and δ = 2.5. The data term is multipled by the epipolar

constraint in order to strongly influence the flow to obey

epipolar geometry.

The use of two–cycle consistency and epipolar constraints

changes Eq. 1 to:

E(w)=
∑

q

min(|Skb(q)− Sja(q + w(q))|1, t)× epi + cyc (4)

+
∑

r adj. to q

min(α|uq − ur|, d) +min(α|vq − vr|, d)

+
∑

q

ν|uq + vq|

This formulation was found to produce the best alignments,

which obeyed both geometric constraints among most

correspondences.

5.4 An ISLC From a Flow Field

An accurate flow field, w, between images Ija and Ikb
specifies the dense correspondence of one image to another

and is used to solve the PnP problem. The PnP problem

is that of finding the pose of a camera from a set of 3D-

2D correspondences. The result is a localized pose, which

can become an inter–session loop closure constraint. There

are four steps in the process: Sec. 5.4.1) acquiring 3D-2D

correspondences from the flow field and the landmarks of

each survey; Sec. 5.4.2) inter–session localization using the

3D-2D correspondences; Sec. 5.4.3) dual refinement of the

two localized poses; and Sec. 5.4.4) a one-step loop–closure

verification.

5.4.1 Acquiring 3D-2D Correspondences Each landmark

from one image is mapped to a 2D coordinate of the

other using the flow field, which results in two sets

of 3D-2D correspondences (one for each direction) (see

Fig. 7). More formally, the 2D coordinates of landmarks

Mj
a = {mj,a

ψ }
nj,a

ψ=1 that were observed in Ija are mapped to

pixels of Ikb as w(mj,a
ψ )→ m

j,a→k,b
ψ . The flipped flow, w,

which is obtained with reverse lookup, provides w(mk,b
ϕ )→

mk,b→j,a
ϕ , for ϕ ∈ 1..nk,b.

The mapping of landmarks through a flow field provides

an approximation, which is further refined using epipolar

constraints. Landmarks are, in this framework, assumed to

lack feature descriptors for matching across surveys. Our

framework’s substitute is a mapping through the flow field,

a result that may have slightly diverged from the true

landmark locations. Thus, after mapping all the landmarks,

the subset that satisfies epipolar geometry are retained.

The correspondences are discarded if there are fewer than

15, which typically occurs when the flow misaligns scene

structures.

5.4.2 Localization A set of 3D-2D correspondences is

used to localize the camera pose of one survey to the other

survey, as shown in Fig. 7, which is the perspective-n-point

(PnP) problem. The 6D pose that corresponds to the mapped

2D image coordinates, xja or xkb , is localized to the survey for

which the 3D points are given, k or j, respectively. Because

there are two directions of 3D-2D correspondences, a dual

5.4.1) Acquiring 3D-2D Correspondences:

Survey j
Survey k

Landmarks
Tracked In
Image I

j
a

(A Mapping)

Flow Field, w

Mapped 2D
Coordinates
To Image Ik

b

Pose x
j
a Pose xk

b

5.4.2) Localization:

3D-2D Localization

3D Landmarks L
j
a

Mapped 2D
Coordinates

Mj,a→k,b

x̂
k→j

b

Figure 7. Localization to a prior survey after using a flow field

to acquire 3D-2D correspondences. 5.4.1) A flow field defines a

mapping from pixels of one image to another, with which the

landmarks Lj
a seen in I

j
a are mapped to pixels M

j,a→k,b of Ik
b .

5.4.2) Localization proceeds as bundle adjustment using 100

iterations of RANSAC, each with 15 random 3D-2D point

correspondences of the tuple (Lj
a,M

j,a→k,b). The result is the

localized pose xk
b in survey j, i.e., x

k→j

b .

localization problem is formulated in which both camera

poses are localized together.

Localization is performed by applying bundle adjustment

to a factor graph that represents a random sample of 3D-2D

correspondences. Points of the tuple (Lja,M
j,a→k,b) are the

3D-2D correspondences used to compute x
k→j
b , pose xkb in

survey j (see Fig. 7). A set of 15 correspondences (our future

work has replaced this part with P3P for 3 correspondences)

is randomly sampled from the tuple. A factor graph is

created with one node for the pose and one localization

factor for each of the 15 correspondences (a localization

factor is a projection factor with a constant landmark and its

implementation here is due to Beall and Dellaert 2014). The

application of bundle adjustment minimizes the reprojection

error (the error between the tracked pixel location of a

landmark and its reprojected location) of the factors.

The estimate of x
k→j
b is refined in multiple iterations

of RANSAC. The new estimate in each iteration is graded

according to the number of inlier 3D-2D correspondences.

Inliers have a reprojection error of less than 6.0 pixels. A

better value for x
k→j
b is acquired if the estimate has more

inliers. RANSAC is stopped after 100 iterations.

The same procedure is applied to (Lkb ,M
k,b→j,a) to get

xj→k
a .
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5.4.3 Bi-Directional Refinement The RANSAC proce-

dure provides a close initial estimate of xj→k
a and of x

k→j
b ,

which are further refined using an expectation–maximization

bi-directional bundle adjustment. Because the pair of tuples

correspond to the same flow, the estimate of xj→k
a is tied

to the estimate of x
k→j
b . If the two estimates are left as-

is, optimized separately, the difference between them could

skew later image and survey alignments. Bi-directional bun-

dle adjustment may pull them into closer agreement. Addi-

tionally, in contrast to the RANSAC step, all the inlier 3D-

2D correspondences are used in each iteration of expectation

maximization.

A two–variable factor graph that corresponds to xj→k
a

and x
k→j
b is used to represent the bi-directional bundle

adjustment. A factor is added to represent the constraint that

x
k→j
b = xja ⊕ (xj→k

a ⊖ xkb ), (5)

where ⊕ is the compose operation in the SE(3) lie group,

and ⊖ the between operation. A localization factor is also

added for each inlier 3D-2D correspondence. The poses

x
k→j
b and xj→k

a and the reprojection error for each 3D-

2D correspondence are updated after each iteration, which

can change the set of inliers. The optimization is terminated

when the number of inliers stops changing or after 15

iterations. The result is discarded if fewer than 40% of the

3D-2D correspondences are inliers.

5.4.4 Loop Closure Verification An inter–session loop

closure is acquired if the localized pose xj→k
a passes a

one-step verification using the nearest localized pose and

the known change in pose (see Fig. 8 and e.g. Latif

et al. 2013). This verification step is similar in principle

to alignment verification (Sec. 5.3.1): A localized pose that

is an informative one may be robust to noise, which is a

property that can be verified. Once verified, the localized

pose index, (j, a), the reference pose index, (k, b), and the

transform between their poses, xja ⊖ x
k→j
b , are composed

into an ISLC

(j, a, k, b, xja ⊖ x
k→j
b ), (6)

which is added to the set of ISLCs, Hj , for survey j that

are used for multi-session optimization (Sec. 7). An ISLC

that corresponds to x
k→j
b is also added to the set Hk for

survey k, which simplifies applying the same constraint to

both surveys.

The pose xj→k
a is verified using a set of 3D points, the

known change in pose, and the localized pose that is nearest

in the sequence, e.g. suppose the one captured at time a− 1,

i.e. x
j→k
a−1 , which may not yet have been verified itself. An

estimate x̂j→k
a is computed using the known change in pose

between x
j
a−1 and xja as

x̂j→k
a = x

j→k
a−1 ⊕ (xja−1 ⊖ xja). (7)

The 3D landmarks observed at xkb are projected onto both

xj→k
a and x̂j→k

a . Both localized poses xj→k
a and x

j→k
a−1 are

verified if at least 25% of the points project onto both images

and their average reprojection error is less than 6.0 pixels.

Verified

Unverified
Survey k

Localized

pose x
j→k
a

Nearest localized

pose x
j→k
a−1

Known change in pose

(xj
a−1
⊖ x

j
a) The estimate x̂

j→k
a

Figure 8. One–step verification of the localized pose xj→k
a

using the nearest localized pose, e.g., suppose x
j→k
a−1

, and the

known change in pose, (xj
a−1

⊖ xj
a). The map points observed

at xk
b are projected onto the localized pose, xj→k

a , and the

estimate, x̂j→k
a . solid) The loop–closure is verified (at which

point it is added to the set of ISLCs) if the map points project

onto nearby pixels of both images (x
j→k
a−1

is consistent with

xj→k
a ). dotted) The loop–closure remains unverified if the map

points project onto distant pixels (x
j→k
a−1

is inconsistent with

xj→k
a ).

6 Reprojection Flow

Reprojection Flow (Griffith and Pradalier 2016) can provide

map point correspondence priors between two images when

the pose transforms between them are known. Map points

are reprojected from one survey onto another to acquire the

priors. They may help to anchor the image alignment process

to the correct dense correspondence when the appearance

of a scene has changed. They may also help guide an

alignment when perceptual aliasing is high. After estimating

the localization of a pose (Sec. 6.1), the reprojection of map

points determines which viewpoint is selected (Sec. 6.2) and

where dense correspondence is anchored (Sec. 6.3).

6.1 Relative Pose Estimation

Relative pose estimation is the step of estimating the

next localized pose in the sequence, x̂
j→k
a+1 , which with

a consistent map and poses, enables viewpoint selection

and data association before using any information from

appearance. The pose estimate x̂
j→k
a+1 can prespecify which of

the landmarks Lk project onto Ija+1 (similar to the depth map

projection of LSD-SLAM Engel et al. 2014), which allows

us to perform viewpoint selection (Sec. 6.2) without the

use of image feature descriptors. Thus, viewpoint selection

is appearance–invariant given a consistent map and poses.

(Occlusions can affect, however, the accuracy of viewpoint

selection without an additional heuristic to further limit the

set of points that is considered ‘visible’. A simple heuristic

to add is a constraint on the camera pose.) The pose estimate

also prespecifies where the landmarks Lkb project onto Ija+1

for the 2D coordinates M̂k,b→j,a+1, which can be used to

anchor dense correspondence (Sec. 6.3) before using any

information about the visual appearance of the scene. Note,

the dense correspondence obtained using map point anchors

may not be appearance–invariant. The estimate of x̂
j→k
a+1 is

computed using the pose transform, (xja ⊖ xj→k
a ), and the

known change in pose, (xja ⊖ x
j
a+1), as

x̂
j→k
a+1 = xj→k

a ⊕ (xja ⊖ x
j
a+1). (8)

This equation is equivalent to that of Eq. 7.
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Figure 9. Viewpoint selection using the co-visibility of

reprojected map points. The viewpoint with the most similar set

of seen and unseen map points to a reference pose, as

captured using a contingency table, has the highest co-visibility,

and is the one for which the G-statistic is maximized.

Reprojection Flow is used during the ISLC search where

the relative poses between two surveys are estimated. Image

retrieval is replaced with the viewpoint selection of Sec. 6.2

and full image alignment with the map–anchored dense

correspondence of Sec. 6.3. Because Reprojection Flow

boosts image alignment, the search for ISLCs proceeds

backwards and forwards from a new ISLC, sometimes

reattempting image alignment where it previously failed

without map anchors. The use of Reprojection Flow in a

particular search direction is stopped after unsuccessfully

aligning three image pairs in a row or after encountering an

ISLC.

6.2 Viewpoint Selection

To identify two images of the same scene, we chose the

approach that two viewpoints capture the same scene if the

same set of map points projects onto them (see Fig. 9).

In contrast to an approach based on feature matching, this

information can be independent of the time scale across

which viewpoint selection is performed. Over a year, the

appearance of a scene could change negligibly or completely.

If we were to rely on a visual feature descriptor (e.g.,

SIFT) to find the same scene, the difficulty of viewpoint

selection could escalate with the variation in appearance

of the environment. Given a consistent map and localized

poses, however, the set of reprojected map points can provide

information that is independent of appearance.

There are a number of ways to identify the same viewpoint

in multiple surveys using a consistent map and localized

poses. Two images capture the same scene if, for example,

given one camera pose, a nearby pose is pointing in a similar

direction. If that heuristic was used, however, the scene

contents would be unaccounted for—a distant scene may not

be visible in both images. Alternatively, the number of map

points that are visible in both images could be maximized.

Yet, one image may capture a much larger area than the other.

In this paper, the image with the most similar viewpoint to a

reference image views roughly the same set of map points.

Viewpoint selection utilizes co-visibility, a heuristic for

maximizing the mutual information of reprojected map

points (computed similarly to FAB-MAP from Cummins and

Newman 2008, but here based on point projection rather

than to identify whether a place has been seen before using

appearance features). Co-visibility is based on the property

that a map point either projects onto an image or not. A

viewpoint has high co-visibility to a reference image if the

map points that project onto it also project onto the reference

image, and the rest project outside of both images. Two

viewpoints have low co-visibility if many map points project

onto one image and not the other.

To calculate the co-visibility of two viewpoints, co-

visibility statistics for all the map points are accumulated

in a two–variable contingency table. The two rows of the

table correspond to ‘seen’ and ‘unseen’ map points for

one viewpoint, the two columns of the table for the other

viewpoint, in the form:

‘unseen’ ‘seen’

‘unseen’ N00 N01

‘seen’ N10 N11

,

The co-visibility of two viewpoints is calculated using the G-

statistic, a method from statistical analysis, which has been

applied in robotics to, e.g., measure co-movement in Griffith

et al. (2011), as:

G = 2

1
∑

i=0

1
∑

j=0

Nij ln

(

Nij(N00 +N01 +N10 +N11)

(N0j +N1j)(Ni0 +Ni1)

)

,

(9)

The co-visibility to a reference image is calculated for each

candidate image of a survey using Eq. 9. The equation is

maximized for the viewpoint with the highest co-visibility.

6.3 Map–Anchored Dense Correspondence

The set of reprojected map points that are co-visible in an

image pair is used to anchor their alignment. Each map

point specifies a precise correspondence between the images

of two well–localized cameras when projected onto them

(see Fig. 10). This reprojection flow directly constrains the

pixels where the map points are reprojected. Indirectly,

reprojected map points anchor the alignment consistency

constraints, define the epipolar lines to which the other pixels

are constrained, initialize their hypothesis spaces to average

flow of the map points, and limit the range of their hypothesis

spaces. Collectively, a dense correspondence may be nearly

fully specified using Reprojection Flow before using any

information about appearance.

Map point priors are added to image alignment using SIFT

Flow to obtain the final dense correspondence. Although

the appearance aids less in the alignment of images

from opposite seasons, it can improve the alignment of

images captured during similar time periods. Furthermore,

the smoothed dense correspondence created by the MRF

optimization may help reduce artifacts created by strong

map point anchors. Those anchors are only correct up to the

Prepared using sagej.cls



Griffith, Dellaert, and Pradalier 13

Jan. 6 (Ref.) Jan. 17 Jan. 22 Jan. 29 Feb. 5 Mar. 14

Reprojected

Map Points

Reprojection Flow

+ SIFT Flow

SIFT Flow

Figure 10. Map–anchored dense correspondence using Reprojection Flow for one scene from the Symphony Lake Dataset.

Keypoint tracks from the reference survey (top left image) are shown reprojected onto images of the same scene from other

surveys (top row). The locations of reprojected map points are the priors that anchor SIFT Flow to the final dense correspondence

(middle row). Image alignment using the off-the-shelf version of SIFT Flow is provided for comparison (last row). Note that errors in

the alignments produced using Reprojection Flow in this example occur in the areas of the images without reprojected map points

(see e.g., the shoreline of the Jan. 29 image).

magnitude of their reprojection error. Thus, the alignment

energy is as specified in Eq. 4 except for pixels that are

map–anchored as part of Reprojection Flow (abbreviated to

rf here), whose alignment energy is:

E(w) = rf + cyc (10)

+
∑

r adj. to q

min(α|uq − ur|, d) +min(α|vq − vr|, d)

+
∑

q

ν|uq + vq|

Because the data term of the energy function is a function

of scene appearance, it is replaced at the pixels where

reprojected map points are specified. A suitable value for rf is

calculated using the median of the data terms, t (from Eq. 1).

That is,

rf ∝ (1−N (κ, s))× t, (11)

where κ is the pixel location of the reprojected point and s is

the reprojection error divided by the image scaling factor.

The cycle consistency, cyc, from Eq. 2 is still used. No

alignment verification is performed when Reprojection Flow

is used to guide the image alignment. Rather than project

map points from all the surveys onto each image, only those

from the two surveys that correspond to the two images are

used, which limits the reprojection error to one direction.

Reprojected map points also define an initial hypothesis

space at each pixel, which may help reduce perceptual

aliasing for two reasons. First, the dense correspondence

is initialized near the correct alignment (given an accurate

pose transform between surveys), which is calculated as

the average reprojection flow for all the landmarks of the

reference image. Without Reprojection Flow, it is initialized

to a zero-vector flow, which with the regularization term

may create a bias in favor of the wrong alignment. Second,

the hypothesis space is the L∞ distance from the average

flow of the reprojected map points. With a nearly correct

initialization and a small hypothesis space, less information

may be needed to pull the image into the correct alignment.

Note that using Reprojection Flow during the ISLC

search is susceptible to being locked to inaccurate dense

correspondences. Without discriminative appearance (e.g., a

switch to gray images after reaching a verified localization),

our current formulation of Reprojection Flow could keep

dense correspondence at the map point priors. This is

different from the case of images from different seasons,

whose SIFT images may mismatch, but which may be

highly discriminative. Discriminative appearance features

counteract inaccurate map point anchors. In cases where a

series of inaccurate map point anchors have locked a small

series of images into a misalignment, resulting in inaccurate

ISLCs, their inconsistency with the larger set of ISLCs could

lead to their removal during multi-session optimization.

7 Multi–Session Optimization

The third step of survey processing consists in applying

multi–session optimization to acquire consistent maps and

trajectories for a set of surveys. The ISLCs between them are

the constraints that indicate how to align them (see Fig. 11).

Because visual feature descriptors are not shared among

surveys, some of the ISLCs are temporal loop closures,

which connect surveys at the beginning and the ends of the

chain of surveys and may keep a long chain of surveys from

drifting apart.

The constraints of the multi–session optimization can

be represented using one large factor graph of multiple

surveys and ISLCs, but we optimize over subgraphs due to

the need for scalability and robustness. Bundle adjustment

applied to the full graph may otherwise become intractable

in peak memory and optimization runtime as the number

of surveys is increased (Ni et al. 2007; McDonald et al.

2013). The full graph can be, fortunately, easily partitioned

into subgraphs by replacing each ISLC with a pose prior

(see Fig. 11). Subgraphs are thus optimized in parallel

over several iterations. At the end of each iteration, the

ISLC pose priors are updated using the result from the

previous iteration. Compared to an optimization over the full

graph, subgraph optimization can be lightweight, fast, and

accurate (Ni et al. 2007).
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Figure 11. An example factor graph of the multi–session

optimization and its conversion into subgraphs. The graph for

each survey is nearly identical to that from single–session

SLAM, in Fig. 4. However, instead of using velocity variables

and a constant velocity assumption to constrain changes in

camera poses, the changes in poses computed in Sec. 4 are

used for that constraint. Blue lines represent loop closures

between surveys. Thick blue lines delineate temporal loop

closures, which are demarcated to bring attention to the fact

that they may keep a long chain of surveys from drifting apart.

Smart factors are used, but they are omitted in this visualization.

The high likelihood of noisy ISLCs and the often weak

constraints between poses within each survey lead us to

our expectation maximization implementation of subgraph

optimization. Expectation maximization is used to filter

poor ISLCs over multiple iterations. An optimization that

includes inaccurate ISLCs would otherwise pull surveys into

an inaccurate alignment. Between the multiple iterations

of the parallel bundle adjustment of subgraphs, before the

ISLC pose priors are recomputed, the error of each ISLC is

calculated to find outliers. Outlier ISLCs are deactivated for

the next iteration.

The multi–session optimization is defined in Algorithm 1.

For a number of surveys, nΠ, each one, j, with optimized

trajectories, Xj , and landmarks, Lj , measurements of

landmarks, M j , and inter–session loop–closures, Hj , an

iterative bundle adjustment is applied to recover the multi–

session–optimized trajectories, X j , and maps, Lj . Two

stages of optimization are performed (referenced by state),

which include a series of optimizations with every ISLC,

followed by an expectation maximization series in which the

inconsistent ISLCs are removed. Each series is implemented

in multiple iterations (lines 4–11) with a weighted update

(line 10) to gradually pull each survey into agreement

with one another (a nonweighted update is susceptible to

Algorithm 1 Subgraph multi–session optimization. A dot

above the pose symbols in line 9 denotes the distance is only

over the position, not both the position and the orientation.

Input Xj , Lj , M j , Hj for j ∈ 1..nΠ

Output X j , Lj for j ∈ 1..nΠ

1: {X j ,Lj} ← {Xj , Lj} for j ∈ 1..nΠ

2: enum state{ALL=0, F ILTERED,DONE}
3: for s = state::ALL;s != state::DONE;++s do

4: while ∆C > 0.01 do

5: Hj ←UpdateISLCs(Hj , {X j ,Lj}nΠ

j=1,s)

6: for j ∈ 1..nΠ do ⊲ in parallel

7: Gj ←ConstructGraph(Xj ,M j , Hj)

8: {X̂ j ,Lj} ←BundleAdjustment(Gj)

9: cj ← Median({‖ ˙̂xjt − ẋ
j
t ‖2}

nj

t=1)

10: x
j
t ← 0.9× x̂

j
t + 0.1× x

j
t for t ∈ 1..nj

11: C ← 1
nΠ

∑

cj

12: return {X j , Lj}nΠ

j=1

a nonconverging oscillation in some cases). Each survey is

optimized in parallel (lines 6–10), with graph construction

(line 7), bundle adjustment using the Levenberg–Marquardt

algorithm (line 8), a measure of convergence (line 9), and a

weighted update (line 10) applied separately to each survey.

The optimization is considered converged when the median

change in position, cj , averaged over all the surveys, C, has

changed by less than 0.01 m (line 4).

Inconsistent inter–session loop closures (line 5) are

filtered in the second stage to help boost map consistency.

Incorrect ISLCs are identified using reprojection error. For

an ISLC between pose xja and xkb , four different tests

for outsize reprojection error are applied, which involve

the 3D-to-2D point sets: 1) (Lja,M
j,a); 2) (Lkb ,M

k,b),
3) (Lja,M

j,a→k,b); and 4) (Lkb ,M
k,b→j,a). A threshold is

computed using the reprojection error, rja, which is measured

using (Lja,M
j,a). If any of the four tests of reprojection

error exceed 3×max(rja,
1
nΠ

∑

j
1
nj

∑

a r
j
a), the ISLC is

marked as an outlier and goes unused until some later update

changes it back.

8 Experiments

The experiments evaluate our approach using the Symphony

Lake Dataset (Sec. 3). We first show that our framework can

be applied to a dataset of that size and complexity (Sec. 8.1).

It finds abundant data association across its images, and can

optimize all the maps and trajectories in tractable time. We

next used the map with Reprojection Flow to align random

image pairs across different time intervals. We compared

the results to related approaches to show by how much the

map helped image alignment (Sec. 8.2). The comparison

goes one step further to show that the well–aligned images

from this paper are more often superior (Sec. 8.3). We then

divided image alignment quality by scene and found that

many well–aligned images could be expected in many time–

lapses (Sec. 8.4). That led us to produce 100 time–lapses

of random scenes, of which several had a large number of

well–aligned images (Sec. 8.5). With promising results, we

evaluated the pose error of misaligned image pairs and found
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Figure 12. Inter–session loop closure connectivity for each year of the Symphony Lake Dataset top) before and bottom) after

optimization. Each grid cell represents the number of ISLCs between two surveys. A figure has more grid cells if that year had more

surveys. The grid cells for 2017 are larger because there were fewer surveys in that year. The ISLC search was also limited to

three, rather than eight, surveys because we captured them less frequently. The nonzero cells in the top-right of each grid account

for the ISLC connectivity across the time between the beginning and the end of each year.

that improving map consistency in future work could lead to

even better results (Sec. 8.6).

8.1 Aligning One Year of Surveys

We first applied our framework to each year of surveys of

the Symphony Lake Dataset to characterize its runtime and

data association performance. The framework was applied

four times for the four years of surveys between 2014 and

2017. For one survey from the dataset, a run of single–

session SLAM had peak memory usage of nearly 16GB and

completed in about two minutes (on a 2.4GHz machine). The

average reprojection error of an optimized map and camera

trajectory was approx. 3.5 pixels (Griffith and Pradalier

2017), which indicated that each map–trajectory tuple was

individually consistent.

The data association pipeline of Sec. 5 was effective in

providing a large number of inter–session loop closures

between surveys of a natural environment, as shown in the

top row of Fig. 12. For the Symphony Lake Dataset, we only

ran the image alignment pipeline between surveys within

three months of each other, which are the ones that typically

had appearance–based alignments. The few ISLCs that could

have been obtained beyond that was not worth the extra

runtime. Because surveys were captured roughly bi-weekly,

ISLC search was run from each survey to each of its eight

previous surveys. The search was similarly applied to pairs

of surveys between the beginning and the end of the year,

which created a temporal loop–closure. For the set of surveys

from 2014, for example, Sec. 5 was applied to a total of

37× 8 = 296 pairs, which resulted in 332, 441 ISLCs. The

runtime on an average pair of surveys took approx. 5-7 hours

(mostly consumed by SIFT Flow). We used a cluster of 20

nodes to collect the constraints for each year of surveys

in approx. one week. The use of Reprojection Flow within

ISLC search added approx. 1.3× more ISLCs.

A large number of inter–session loop closures were also

retained after multi–session optimization, as shown in the

bottom row of Fig. 12, which may represent a consistent set.

Approximately 58% of the ISLCs were retained. After 6-10

iterations with all the ISLCs, each of the sets took five more

iterations to converge again with filtering. Each survey was

optimized in 30-45 seconds, with each iteration of multi–

session optimization taking double that for 37 surveys on a

machine with 32 threads (the runtime of optimization was

in proportion to the number of surveys and the number of

machine threads). The update step of the filtering stage (line

5 of Alg. 1) added approx. 1 minute to each iteration. The

total optimization runtime was approx. 25 minutes for a set

of 37 surveys. For comparison, a single iteration of bundle

adjustment over the standard, full graph (shown in the top

half of Fig. 11) took longer than 24 hours so was terminated.

The patterns of connectivity varied for different pairs

of surveys, but were similar before and after optimization.

Connectivity decreased between pairs away from the

diagonal, consistent with the increased amount of time

between surveys. It also dropped out between surveys with

large differences in lake levels, notably to a group of surveys

in 2014 and to two surveys in 2016. Image pairs between

those surveys had the most variation in appearance. The

matching pattern of connectivity after optimization indicates

that the multi-session optimization result had a similar

goodness-of-fit to the constraints among all the surveys. The

evaluation does not indicate, however, how consistent the

map is.

8.2 Image Alignment Quality

We measure the map consistency using the image alignment

quality for image pairs of random scenes between random

surveys. In this evaluation, images are aligned and hand–

labeled to measure how consistent the multi–session
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Figure 13. Example comparison of image alignment using RF*

vs. using ICP-H (The method of Pradalier et al. 2019, to which

we add SIFT Flow, which can make the alignment more

precise). Whereas RF* uses the reprojection of map points to

set the hypothesis space, in the latter approach, a homography

is applied to parallelize the image planes. The ICP-H image pair

may be nearly aligned. To this ICP-H pair we add, however,

alignment using SIFT Flow. In this figure, only the image pair

aligned using RF* is well–aligned. The ICP-H approach set the

hypothesis space to the wrong regions of the two images.

optimization result is. The criteria for hand–labeling image

pairs may be more clear with the video. The majority of

scene content should appear to line up when the images

are flickered back-and-forth. It is, however, subjective in

some cases due to ambiguities and perceptual aliasing across

seasons. We have measured the alignment quality using

different heuristics in prior evaluations, but a better metric

is to use the hand–labeled alignment quality. The trend of

the hand–label metric best matches the qualitative image

alignment quality. No ground truth was available.

For the comparison, 1000 random image pairs of the same

scenes were selected, aligned, flickered back and forth in a

display, and then manually labeled well–aligned or not for

four different methods:

SF* SIFT Flow with image alignment constraints

RF* Reprojection Flow with image alignment constraints

RF Reprojection Flow without constraints

ICP-H an image alignment approach based on the use of

ICP (on 2D LiDAR data), a homography, and multi–

session optimization from Pradalier et al. (2019), to

which we added SIFT Flow, which can make the

alignment more precise.

Pradalier et al. (2019) produced a consistent map and

trajectories of the Symphony Lake Dataset by applying an

ICP algorithm to the 2D laser scan data of each survey, which

produced a result they used to facilitate image alignment.

They first applied ICP to the laser scan data to get pose

transforms between images from different surveys. The

sequence of 2D transforms were added to a factor graph of

keyframes, one every 20 m and 1 minute degree, which was

optimized for all the surveys in a year. After multi–session

optimization, they showed that an image pair of the same

scene could be nearly aligned by applying a homography

to parallelize the image planes. Indeed, a homography also

removes changes in scale that can affect SIFT feature

matching. Thus, for the comparisons in this paper, we added

SIFT Flow with a small hypothesis space (see the bottom
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Figure 14. Comparison of alignment quality over time shown

as the percent of well–aligned images per time interval. A single

alignment was of two images of the same scene taken from two

different surveys. Each method aligned the same set of 1000

random image pairs, generated from the 2014 surveys from the

Symphony Lake Dataset. The top row shows the number of

alignments in each time interval. The y-axis plots the percent of

those well–aligned images.

row of Fig. 13), which can limit perceptual aliasing, can keep

the alignment quality higher on average, and can make for a

fairer comparison.

The four methods are distinguishable in the number

of high–quality alignments they produced, as shown in

Fig. 14. SIFT Flow produced significantly fewer well–

aligned images, which shows that using a map to guide

image alignment was, for these cases, significantly better

than not. The best method at every time interval was

Reprojection Flow, which relied most on the map to guide

image alignment. The dip in the alignment quality towards

six months indicated that the variation in appearance had an

effect on all four methods.

8.3 Comparing Reprojection Flow to the

ICP-Homography Approach

The number well–aligned images of Pradalier et al. (2019)

showed that its performance was in many cases close to

Reprojection Flow, which motivated a direct comparison

of the aligned images to better gauge any difference in

alignment quality. The aligned image pair of both methods

were placed side-by-side in a flickering display. The

result that better aligned the scene contents was manually

identified. Otherwise, if neither was better than the other, the

pair was labeled comparable. The process was repeated for

all 1000 image pairs of Sec. 8.2.

The result in Fig. 15 shows that the two methods produced

comparable image alignments in about half the cases. For the

rest of the image pairs, Reprojection Flow produced better

alignments twice as often as ICP-H, a trend unaffected by

the change in time scales in a year. Most of the differences in

image alignment quality appeared to derive from differences

in map consistency. Where the maps were incorrect, the

images were setup for an incorrect alignment, as shown in

e.g. the bottom row of Fig. 13. Many of the comparisons

were often between image pairs where neither aligned well,
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Figure 15. Grading Reprojection Flow to ICP-H by comparing

1000 random image pairs that were aligned with both methods.

Reprojection Flow was applied without alignment constraints for

this comparison, which kept its function closer to that of ICP-H.

The comparison divides the 1000 image pairs into eight

intervals of time between surveys, in increments of 45 days, to

show that the trend was unaffected by the variation in

appearance.

but some parts of one image pair aligned well. That made the

trend in this figure different from that of Fig. 14.

8.4 Image Alignment Quality By Scene

We next plotted the image alignment accuracy by scene to

determine by how much different scenes affected alignment

performance, and where complete time–lapses (with an

image from every survey) could be possible. The average

image alignment quality of 43.8% suggested that complete

time–lapses could not be produced unless the images aligned

better at different scenes, which was likely. A cover set of the

environment was identified for one survey (the cover set was

acquired by applying the method of Griffith and Pradalier

2017, to the June 25, 2014 survey) and then each of the

1000 image pairs was added to the nearest scene (the position

where the reference image had the min L2 distance). If the

scene had at least four image pairs, then the percent of well–

aligned image pairs was plotted.

Image alignment quality varied substantially by scene,

as shown on the left side of Fig. 16. Some scenes along

the shoreline had many well–aligned images whereas other

scenes had none. The scenes with the most well–aligned

images were along the straights. Fewer well–aligned images

were produced along curves in the path. Thus at certain

locations our approach to dense correspondence showed

robustness to difficult variation in appearance. Yet, the

number of well–aligned image pairs did not demonstrate

that our method was robust to a full year of variation in

appearance, or if those were locations where a large number

of image pairs were from sessions captured around the same

time. We next tested whether this result held true across

complete time–lapses with a year of variation in appearance.

8.5 Producing Time–Lapses

With a high likelihood of more complete time–lapses at some

scenes in the environment, the next step was to create them.
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Figure 16. Alignment quality around Lake Symphony for the

left) image pairs of Sec. 8.2 and the right) time–lapses of

Sec. 8.5. The similarity of the results of the two sets indicates

that our method may be robust to difficult variation in

appearance at some locations. The satellite view is from Google

Maps.

To create a time–lapse, a reference image was randomly

chosen from a random survey, and then an image of the

same scene from every other survey was selected and aligned

using Reprojection Flow with constraints. The quality of the

time–lapse was manually labeled. First the reference image

and each image of the time–lapse were flickered to keep

only well–aligned image pairs. Then the time–lapse was

repeatedly scrolled through to keep only the images that

added to it (also well–aligned). Two examples are shown in

Figs. 17 and 18. The process was repeated 100 times.

The results show that the quality of the time–lapses was

consistent with the image alignment quality of Sec. 8.2;

although the time–lapse quality varied, some locations

aligned particularly well. The quantitative time–lapse quality

is shown in Fig. 19 and shown by place in the right of Fig. 16.

Approximately a third of the time–lapses had about two

thirds or more of well–aligned images. These time–lapses

typically spanned all four seasons. The misaligned image

pairs did not consistently have significantly more variation in

appearance, and were not always from consecutive surveys.

Instead, the reprojected map points appeared to mismatch the

correct alignment (see Fig. 20 top).

Some effects of aligning a set of images into a time–lapse

include the lack of variation in viewpoint and the addition

of noise in the result. Before applying image alignment, a

set of images of a scene was a time–lapse whose variation

in viewpoint sometimes detracted from the collection. After,

the noise added due to the alignment process sometimes

detracted from it (see Fig. 20 bottom). Having accurate maps

and very similar viewpoints helped minimize that noise to

create visually smooth transitions. Noise often was, however,

a side effect of image alignment.
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Reference Image

Misaligned Image

Figure 17. Timelapse of one scene of Symphony Lake from 32 surveys captured between 2014 Jan. 6 and 2014 Dec. 22. The

images were selected and aligned to the reference image using Reprojection Flow.

;

Reference Image

Misaligned Image

Figure 18. Timelapse of one scene of Symphony Lake from 37 surveys captured between 2014 Jan. 6 and 2014 Dec. 22. The

images were selected and aligned to the reference image using Reprojection Flow.

8.6 Pose Error of Misaligned Image Pairs

Because any pose error could cause errors in the locations

of reprojected map points and could lead to misaligned

images, we next measured the magnitude of the pose error

for misaligned image pairs taken from the time–lapse set.

A misaligned image was selected for the evaluation if it

appeared to share several strong features with the reference

image, which simplified the labeling task. A map point in

the reference image was selected and the corresponding

point in the selected image was hand–labeled. After hand–

labeling at least 15 correspondences, a one-way localization

was performed, similar to that described in Sec. 5.4.2. The

localized pose was used as the ground truth if the map points

from the reference image projected onto their locations in the

selected image. If the projected map points were incorrect,

the set of hand–labeled correspondences was refined until

they did or were discarded. The process was repeated for 100

misaligned image pairs.

Figure 21 shows that the pose error was nonnegligible for

almost all of the misaligned images. The poses of misaligned

images had a median translation error of 1.06 m and a

median orientation error of 3.15 degrees. Pose error this high

caused reprojected map points to be far off from their correct

locations. Even for the pose with the least error of 12cm

and 1/2 a degree, error in the reprojected map points was

visible as slight misalignment of more distant scene contents.

For that image, however, the variation in viewpoint was also

a primary cause of misalignment. Although a foreground

object was aligned well, the background behind it was pulled

out of alignment. Images from more similar viewpoints with

accurately projected map points aligned best.

9 Discussion

Our effort at creating and relying on geometric information

and consistent maps was key for our framework to achieve

data association and produce time–lapses across the year–

long variation in appearance of a natural environment.

Scene structure and geometric constraints helped mitigate the
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Figure 19. Success of 100 random time–lapses measured as

how many images each one consisted of (after manually

sorted). About a third of them had 66% or more well–aligned

images. Most of the time–lapses were created from

approximately 33 image alignments. Although Symphony Lake

Dataset had 37 surveys from 2014, typically only about 33

captured the same scene.

Figure 20. Noise in aligned images. (top) Map points from two

surveys are projected onto the reference image (left) and the

image to be aligned (middle). Their inconsistency caused the

error of the aligned image (right), which otherwise had a strong

appearance–based correspondence. (bottom) The alignment

process added noise to the tree structure in the well–aligned

image (right), even though the map point priors were consistent.
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Figure 21. Pose error for 100 misaligned image pairs. The

median error of the points here is 1.06 m and 3.15 degrees.

variation in appearance to provide correspondences between

surveys. Reprojection Flow was then key for bringing more

difficult image pairs into alignment. Because our approach

was based on the use of geometric constraints to create map

point correspondence priors, its accuracy was sometimes

limited, however, by the consistency to which multiple

sessions were aligned. Issues and limitations are described

in Sec. 9.1, followed by a discussion of the parameters used

with our dataset (Sec. 9.2).

9.1 Considerations for Ongoing Work

The final alignment when using Reprojection Flow is

strongly influenced by the map point priors. Flexibility in

image alignment is limited to the dispersion of the map

points relative to the average flow. For an inconsistent

map, reprojected map points would not correspond to scene

content and would hold the map to the wrong places. For

a consistent map, however, a small hypothesis space may

help reduce perceptual aliasing. Making the rf constraint a

function of reprojection error provided a way to balance the

tightness of the anchor with other appearance information.

If we used the same, strong prior for every map point,

images may more likely be misaligned where the map points

have very high reprojection error. Weaker priors may more

likely give the alignment too much flexibility, increasing

the likelihood of perceptual aliasing. We do not claim this

mixture is the optimal one.

Although we showed robust data association due to the

use of map point correspondence priors, our approach is

also sensitive to the time elapsed between surveys because

it relies on appearance–based data association to acquire a

consistent map. If we had collected surveys less frequently,

there may have been too few loop closures. As shown in

Fig. 12, the July surveys had relatively few constraints to the

others. A lack of temporal loop closures would have left drift

between sessions. In that case, only the sessions within the

range of appearance–based data association (three months)

could have been aligned into time–lapses.

The shortage of constraints between some of the surveys

in Fig. 12 indicates more robustness to the variation in

appearance may be needed. Robustness could be best added

through changes that lead to more loop closures with

appearance–based data association, rather than by adding

more filtering to remove outliers. If we tried to tighten

parameters to keep only the best matching images, that could

reduce the connectivity between surveys beyond what may

be needed to get a consistent set of maps and trajectories.

A primary way to get more ISLCs may be to update

SIFT Flow. SIFT features do not have condition invariance,

unlike descriptors from some neural networks (e.g., Olid

et al. 2018). When SIFT features are extracted at a single

scale, as in SIFT Flow, they are also scale dependent. Scale

and other changes in viewpoint may possibly be corrected by

first applying a homography before SIFT Flow (Dong et al.

2017; Pradalier et al. 2019). For the specific case of the July

surveys, which had a higher lake level that led to the varied

viewpoint, adding a prealignment using a homography may

help with acquiring more loop closures.

A few additional technical corrections could be made

to expand this framework for more general use. Viewpoint

selection may be improved using more constraints to help

find the poses that best correspond to the same scene (e.g.,

add a pose constraint, or reconstruct a mesh to delineate

foreground, background, and occluded features as in Lin

et al. 2019). Also, our formulation of image alignment

should be formulated to handle occlusions differently.
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Currently, image alignment handles occlusions by filling

in the areas of the image that become unoccluded. That

is, dense correspondence is set to a reverse rather than to

an onto mapping. A mapping ’onto’ could leave holes in

the image. Yet, leaving holes may be more accurate than

replacing that content with nearby content of the same

image. Currently, epipolar constraints may filter any map-

point correspondences that would otherwise be within the

filled-in occluded regions.

Two limitations are reiterated:

• Occlusions. A large change in viewpoint can lead

to background map points and those on occluded

objects holding the image in different ways than the

foreground points.

• Non-discriminative appearance during the ISLC

search. The map point correspondence priors could

keep dense correspondence locked into a series of

bad alignments if the appearance–based features of

the scene are too uninformative to pull the dense

correspondence out of misalignment.

9.2 Parameter values

A number of parameters were defined and tuned in

the making of this framework. They are summarized in

Table 1. Our framework has many parameters because it has

many different steps. SIFT Flow and RANSAC were the

two off-the-shelf methods. Factor graph optimization was

implemented using GTSAM, whose noise models are left

out. Each step was typically tested and tuned individually and

then their parameter values were left as-is after integration.

Parameter values were found that applied well within

the Symphony Lake Dataset. Some parameters were made

adaptive if a particular setting was insufficient. For example,

the inlier/outlier threshold at the end of Sec. 7 on multi–

session optimization was initially a single value of six pixels,

but that was inconsistent with the varied reprojection error

after single–session SLAM. Other parameter values may

change when this framework is applied to different datasets.

In that case, the pixel value limits could be made proportional

to the image resolution. However, most may have broader

applicability.

Although the alignment constraints have more parameters

than the other steps of our framework, our formulation

in this paper improved upon that of prior work to make

it more general. This paper introduced image alignment

verification, which replaced our previous use of an alignment

energy threshold (of 1120000) and an alignment consistency

threshold (of 95%) to distinguish well–aligned images. In

our prior work, those thresholds applied well to a 100m

section of shore that we initially evaluated against. For larger

stretches they were ineffective because those values do not

robustly correspond to well–aligned images. The use of

19 iterations of two-cycle consistency is, however, retained

because testing showed that the consistency typically

converged (but not necessarily to 95% or more pixels) before

that or not at all. The 95% threshold was set because the first

layer of image alignment is an approximation, where a 95%

consistency is, in our case, correct enough to proceed with

the alignment of larger resolution layers.

Table 1. Summary of parameters for the different parts of our

framework. Factor graph weights are omitted.

Sec. 5.1: Image Retrieval

5 m, 20 deg. max pose distance to consider an image for

alignment

3 max consecutive attempts of using RF during the

search without success

Sec. 5.2: SIFT Flow

α = 255, alignment energy function parameters

d = 10200
ν = 0.255
h = 11,5,3,1 hypothesis space size down the image pyramid

100 iterations of message passing

Sec. 5.3: Alignment constraints

(3,3) pixels image translation applied for alignment verifica-

tion

40% min proportion of matching correspondences at

which an image alignment is verified

at most 19 iterations of two–cycle consistency

95%≤ 1 pixel stopping criterion at which the forward and

reverse flows are consistent

16 multiplier weight for the cycle consistency term

2.5 value for the epipolar constraint term

Sec. 5.3.3, 5.4.1, and 6.3: Fundamental matrix estimation

3 pixels RANSAC error threshold

0.999 probability the fundamental matrix is correct

Sec. 5.4.2: Localization

15 the number of correspondences used for localiza-

tion in each iteration of RANSAC

100 iterations of RANSAC

6 pixels max acceptable reprojection error of an inlier 3D-

to-2D correspondence

Sec. 5.4.3: Bi-Directional Refinement

at most 15 iterations of expectation maximization

40% min proportion of inlier correspondences at

which localization is successful

Sec. 5.4.4: Loop–closure verification

25% min image overlap required of two localized

poses to verify them

6 pixels max average reprojection error at which two

loop–closures agree

Sec. 7: Multi–session optimization

3 multiplier for the ISLC inlier/outlier threshold

0.01 m convergence criterion as the change in the

average median change in position

0.9 weight for the weighted update

More tuning was done to find the 40% threshold than to

tune the (3, 3) pixel shift we used to verify an alignment.

We used the shift to address perceptual aliasing. Aliasing

occurred in data association due to the reflective lake on the

bottom of images and due to the similar shore contents to the

sides of the images. Shifting the images was a way to identify

whether perceptual aliasing occurred. The best threshold was

found by inspecting the results.

10 Conclusion

This work provided a transform from multiple visual surveys

of a natural environment into time–lapses, and subsequently

produced several time–lapses for a year of surveys. Our

framework’s use of geometric information and consistent

maps, integrated into a dense correspondence optimization,

led to visual data association across significant variation in

appearance. The ISLC search pipeline found a large number

of accurate loop closures, which created the connectivity
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needed to bring multiple surveys into alignment. Using

a multi–session optimization algorithm that filtered outlier

loop closures helped lead to a consistent map for a year of

surveys. Although a long time–lapse at every location along

the shore was not produced, our results show promise on how

to obtain one from a consistent map of a natural environment

and the dense correspondences of its images.

11 Future Work

Although our framework produced time–lapses for several

scenes, higher map consistency would help get complete

time–lapses at every scene. Improving appearance–based

data association could help lead to a more consistent

map. For example, upgrading SIFT Flow to use learned

features (Kim et al. 2017a; Benbihi et al. 2019), or other

features specifically designed and trained for data from a

natural environment (Olid et al. 2018), upgrading the dense

correspondence framework itself (with, e.g., 3DCC Zhou

et al. 2016), or designing our own may be promising ways

to boost image alignment performance. Another boost may

be possible if the KLT feature tracks that provided the map

points are replaced (with, e.g., Ilg et al. 2017; Wu and

Pradalier 2018). Furthermore, Chahine and Pradalier (2018)

demonstrated semi-dense visual SLAM on the Symphony

Lake Dataset, which could later be used with ICP (similar

to, e.g., Park et al. 2019) to provide another source of loop

closures between surveys.

Our map–point priors could also act as a supervision signal

in training a neural network to align images (as in e.g., Dong

et al. 2018). If the alignment optimization is replaced by a

neural network, the manual labeling function we applied in

Sec. 8 (to determine the alignment quality and the pose error)

could potentially be learned and then inferred automatically

(analogous to flow and matchability of Zhou et al. 2016) (see

also Kendall et al. 2015, for learning to infer pose).

Future work could also benefit from a ground truth dataset

of localized poses. The known pose–transforms of Sec. 8.6

facilitated one evaluation in this paper, but they could be

more useful. A ground truth set would facilitate a broader set

of comparisons and evaluations of new algorithms applied to

the Symphony Lake Dataset. This set could also help replace

evaluation by hand–labeling the image alignment quality.
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