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Abstract

This paper describes Symphony Lake Dataset, 121 visual surveys of an approx. 1.3 km lakeshore in Metz, France.

Different from roadway datasets, it adds breadth to the space at a time when larger and more diverse datasets are

desired. Over 5 million images from an unmanned surface vehicle captured the natural environment as it evolved over

three years. Variation in appearance across weeks, seasons, and years is significant. Success on Symphony Lake

Dataset could demonstrate advancements in perception, SLAM, and environment monitoring.
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Introduction

A growing homogenous space of publicly available robotic

vision datasets capture a roadway from a car, which

the release of Symphony Lake Dataset can help to

diversify. Interest in creating autonomous driving vehicles

has contributed to the growth and availability of roadway

data. Work on perception has benefitted from the fact that

these images are captured outdoors, and sometimes over

long–term time periods (e.g., Maddern et al. 2017; Geiger

et al. 2013). Yet, a roadway is highly structured, which could

simplify perception and lead to non-general algorithms.

A long–term dataset of a large–scale natural environment

would add breadth to this space to advance research in

perception.

Simultaneously, advancements in deep learning have

generated interest in massive datasets. Baseline performance

in tasks like scene classification improve with the amount

and the diversity of the training data (Zhou et al. 2016; Chen

et al. 2017). With millions of exemplars, some basic labeling

tasks have reached nearly human–level performance, while

some advanced game AI have surpassed the best humans.

Advancements seem to come in parallel with the availability

of data. The release of Symphony Lake Dataset may

contribute to this growth in results for perception in natural

environments.

This paper proposes the release of Symphony Lake

Dataset, 121 visual surveys of the shore and the island of

Symphony Lake in Metz, France. The 1.3 km shore was

surveyed using a pan–tilt–zoom (PTZ) camera mounted on

an unmanned surface vehicle (see Fig. 1). The camera faced

starboard (or port for the island) as the boat moved in parallel

with the shore. We deployed the boat on average every 10

days from Jan 6, 2014 to April 3, 2017. Over 5 million

images were captured.

The 600 GB dataset is released in two sets: 1) 4 GB

full surveys and 2) 200 MB sub-sampled surveys. The

surveys include GPS, IMU, and compass data, which are

synchronized to the 704 × 480 @ 10 fps color images.

Figure 1. Our Clearpath Kingfisher as it circled the perimeter of

Symphony Lake.

Readings from the 2D LiDAR are also included. Each survey

is available for individual download on a dedicated website

at dream.georgiatech-metz.fr/?q=node/76.

This paper uses a similar structure to Maddern et al. (2017)

(with permission), which is an archetypal robotics dataset

paper. Their autonomous–capable car captured a suburban

neighborhood in Oxford, UK twice a week, on average,

for over a year. The full view of street scenes around their

vehicle is captured in 3D LiDAR and image data (among

data from other sensors). In contrast, this paper captures a

natural environment week-to-week as it evolved over three

years and the data consists primarily of side-view images.

Platform

Our platform is the Kingfisher M200 unmanned surface

vehicle (USV) from Clearpath Robotics (see Fig. 2). The
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Figure 2. a) Front view of our Clearpath Kingfisher and side

views of b) the PTZ camera, and c) the 2D LiDAR. A survey is

initiated using a computer connected via the wifi antennae in

the back. As the motor in each pontoon propels the robot, the

camera pans starboard (or port for the island). The laser

range–finder measures the ranges to obstacles, which are used

to maintain a 10m distance to the shore. The GPS, the

compass, and the IMU measure trajectory values while the

computer inside the waterproof compartment records all of it.

USV has the style of a pontoon–boat. A 0.55 m × 0.80 m

metal base connects the top of two 1.3 m-long pontoons. The

back of each pontoon houses a jet thruster, which propels the

boat up to 1.7 m/s. A power differential between the motors

turns it.

A 40 Ah nickel–metal hydride battery powers the USV.

The battery is secured inside a compartment in the metal

base before each survey. It has enough charge to move the

boat at nearly 0.35 m/s for over an hour. While stationary it

can power the sensors and the onboard computer for up to 10

hours.

Our USV is equipped with four primary sensors:

PTZ Camera: Axis P5512-E. 360◦ Pan. 180◦ Tilt. 12x

zoom. 704x480 @ up to 60 Hz. 3.8mm

Lens. 51.6◦ HFoV.

2D LIDAR: SICK LMS111. 20m Range. 0.5◦ Resolu-

tion. 50 Hz. 270◦ HFoV.

GPS: U-Blox LEA-6. 5 Hz. 2.5m

IMU: CHR-UM6. 2◦ Pitch and roll accuracy.

5◦ Yaw accuracy.

The metal base of the USV has a waterproof electronics

bay inside it and a platform bay on top for the sensors.

The GPS and the onboard computer are housed within the

electronics bay. The PTZ camera, the laser range–finder, and

the IMU are mounted to the platform bay. The camera is

mounted behind the laser, high enough for an unobstructed

view. Because the laser range–finder is mounted facing

forward, distances to objects behind the USV are not

measured.

Sensors fed their data to an embedded computer. The

computer has an Intel Atom Z530 CPU (1.6 GHz, 2 threads,

32-bit), 1 GB RAM, and a 16GB SanDisk SSD U100. In

addition to planning the robot’s motion using LiDAR data,

the computer processed and stored sensor readings. The

harddrive is large enough to store over a survey of data.

a) b)

All Main Shore Partial

95 15 11

Figure 3. a) Symphony Lake from the perspective of Google

Maps Satellite View, and b) depictions of the different

trajectories of the robot with their number of occurrences. The

boat approximately circled the entire perimeter (95 cases),

missed the full island (15 cases), or otherwise partially

traversed its route (11 cases). That is, Main Shore includes

surveys with partial island coverage. Partial here is illustrated

with one example of a partial route; each one was different.

Symphony Lake

Symphony Lake is 2 km south east of Metz, France, across

the street from GeorgiaTech–Lorraine (see Fig. 3a). It is

approximately 400 m at its longest point and 200 m at its

widest point. The total area of the lake and its surroundings

spans 6 ha. It also has an 80 m-wide island in the middle. The

lakeshore perimeter, including the island, is about 1.3 km.

The lake was created in 1986 to prevent floods in Metz.

One main inlet and a single outlet control the flow of water

down a creek. During periods of heavy rain the lake’s water

level can increase several meters. The bank of the lakeshore

is fairly steep, which keeps the water contained in the basin.

The nature of the lakeshore is varied. Some areas are

surrounded with shrubs, bushes, and 20 m-tall trees. There

are areas with boulders, sand, and grass. Buildings loom in

much of the background. They are closer to the shore on the

north east side.

The land around the lake is used to promote recreation.

The grass is periodically mowed, and the other flora are

sometimes trimmed or removed. A 1.35 km fitness path

and a nature trail encircle the lake. Fishing, tanning, biking,

jogging, and walking are common.

Behavior

The trajectory of the boat on Symphony Lake is shown in

Fig. 3b. The boat was typically deployed from the west side

of the shore and was pulled out at the same location after one

complete run. It was sometimes pulled out at other locations

in order to reset automation or to end the survey. Surveys

could be started anywhere along the shore.

The USV circled roughly all of the approx. 1.3 km

lakeshore, which took it nearly 70 minutes. Surveys

occasionally took longer (due to e.g. wind). Several surveys

captured less of the perimeter. Fifteen captured all of the

main shoreline and were ended without the full island.

Eleven captured parts of the main shore and the island. Rain,

battery charge, control errors, and swan interference were

typical limiting factors. A survey was sometimes cut short

if multiple issues occurred.
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A finite state machine generated the robot’s trajectory.

First, the USV navigates to a position 10 m from the shore

and the camera pans starboard. The USV maintains its 10 m

distance as it circles the perimeter in the counter–clockwise

direction. The main shore survey continues until the USV

crosses a virtual transition line, which extends west from

the GPS position of the island’s center. The boat surveys the

island after it aligns itself 10 m from the island’s shore and

the camera pans port. The same transition line is used to shift

back to the main shore survey.

The boat’s trajectory was replanned at a rate of 5 Hz.

A local lattice planner with a 10 m horizon provided the

set of behaviors to choose from. Each one was evaluated

using ranges from the LiDAR. The planner chose smooth

trajectories that also kept the USV 10 m from the shore and

at least 2 m away from obstacles. If the USV got closer

to obstacles, however, the planner diverted its course more

abruptly to avoid collisions.

We monitored the boat for the duration it was deployed,

except while it circled the island. We intervened if necessary

to keep the USV moving in the right direction or to

completely reset automation. A control error sometimes

occurred at the south end of the lake where the sharp turn

caused the USV to oversteer and spin in place. The GPS

position sometimes fluctuated enough that the transition to

the island occurred at the wrong places. We also intervened

to avoid fishing lines and to maneuver around swans.

Survey Data

Data Collection

Each survey consists of image, LiDAR, pose, and state data.

There is one file per image, a set of files for the LiDAR

readings, and one file of all the pose and state information.

Thousands of images and LiDAR readings are saved per

survey. Each 704 × 480 image is stored in a jpeg format with

a slight compression. (Lossy compression was unavoidable

due to the limited choice of formats available from the

camera. The compression level was set to the minimum.)

Each LiDAR reading provided 541 range measurements

across the 270◦arc in front of the robot. New readings were

recorded at a rate of 50 Hz.

Readings from the other sensors are saved to an auxiliary

file. Pose data includes the 2D position (m) from the GPS,

the heading (deg) from the compass, and the angular velocity

(deg/s) from the IMU. The auxiliary file has one set of pose

data per line. Each line in the file corresponds to one image.

State information is saved with the pose data to guide

data processing. The camera state includes its dynamic pan

and tilt values, as well as its static intrinsic parameters. A

pan value of approx. ±1.57 identifies when the survey is

occurring. Other values indicate transitions. A positive value

indicates the USV is surveying the main shore, a negative

value the island. Other information includes the time, the

image number, the battery charge, and the RC controller

state (i.e., whether the USV was operating in autonomous

or manual control mode).

Table 1. The order of values of one line of image auxiliary.csv.

1 timestamp seconds image time

2 image number the image file index

3 UTM E meters GPS position in UTM 32 N

4 UTM N meters GPS position in UTM 32 N

5 compass degrees NED frame

6 camera pan degrees positive for starboard

7 camera tilt degrees

8 fx pixels

9 fy pixels

10 cx pixels

11 cy pixels

12 image width pixels

13 image height pixels

14 omega degrees/second IMU angular velocity

15 battery voltage

16 RC state enum 1 - in range. 2 - in use.

Survey Package

The dataset is packaged according to its size. Thus, 4 GB

surveys are available for individual download rather than as

one large chunk. We also provide a 20x downsampled, 200

MB version for uses that require images with less overlap.

The lidar data is made available in its own package. Using the

May 2, 2014 survey as an example (referenced as 140502),

the files for one survey are:

• 140502f.tar.gz

– Around 41,000 jpeg images in a hierarchical

directory format with 1000 images per directory.

Files are referenced using the value of an image

counter. Images are numbered between 0000.jpg

to 0999.jpg per directory, and directory names

typically span approx. 0000/ to 0041/.

– image auxiliary.csv - lines of image timestamp,

image number, pose readings, and state informa-

tion, in that order, with a new line of values every

0.1 s. The full list is shown in Table 1.

• 140502d.tar.gz

– Contains the same files as 140502f.tar.gz, except

with 1/20 of the readings.

• 140502l.tar.gz - a tar file of LiDAR data for a survey.

LiDAR data is saved to a set of time–ordered csv files,

each with a timestamp in the first column, followed

by 541 range readings (in meters) in the following

columns. Roughly 110 csv files per survey, each with

around 1,800 scans, make a total of about 110×

1, 800 = 200, 000 scans per survey.

To assist in the selection of surveys, a summary video for

each survey is available on our website. The summary is a

subset of images, taken every 1.5 m of the USV’s motion,

compiled into a video.

Additional Files

Additional files are included in Symphony Lake Dataset that

apply to all the survey data:

• ParseSurvey - C++ code to interface with the survey

data. The code reads an image auxiliary.csv file and

can provide the file paths to the images. It also converts

raw sensor data into the camera pose.
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Figure 4. Montage of images of one scene of the lakeshore from 118 surveys, inspired by Maddern et al. (2017). Consecutive

surveys are in row–major order. This scene primarily has features from an unstructured environment, captured over three years. In

the montage of Maddern et al. (2017), in contrast, the structured, street environment has some features whose appearance is more

static (e.g., the sign post they used as a reference), which can simplify data association.
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Figure 5. Timeline of surveys of Symphony Lake between Jan.

6, 2014 and Apr. 3, 2017. The lake was surveyed 37 times in

2014, 39 in 2015, 37 in 2016, and 8 (currently) in 2017.

• camera calibration.txt - The full set of calibration val-

ues for the PTZ camera. A sequence of checkerboard

images was used to obtain the calibration parameters.

• sensor positions.xls - A spreadsheet of sensor posi-

tions for GPS, the PTZ camera, and the 2D LiDAR.

• catalogue.xls - A catalogue that collates survey

attributes like those visible in Fig. 4. Each entry

consists of survey duration, distance traveled, weather

pattern, presence of noise, and more. The attributes for

a survey were manually populated while viewing its

summary video.

The following section characterizes the dataset using the

catalogue.

Dataset Characteristics

Symphony Lake Dataset has 5,031,232 images from 121

visual surveys. Figure 5 shows the timeline of surveys, which

span from January 2014 to April 2017. We endeavored to

deploy the robot every week, but we averaged about one

survey every 10 days. Surveys were missed during weeks of

heavy rains, if we were traveling, or if the lake was frozen.

Although winter surveys were captured with less

regularity than surveys during other seasons, multiple

surveys were captured during each seasonal period. The

winter of 2016-2017 appears the most sporadic due to

the absence of surveys between December 23, 2016 and

February 17, 2017. Yet, seven surveys were captured during

this winter period. Because the flora has minor changes

during winter, and because there is seldom snow, the loss of

information due to the gap in surveys is minimal.

The evolution of one scene across all three years is

shown in Fig. 4. There are large changes in appearance.

Different changes are more apparent across different time

scales. Changes in weather, illumination, viewpoint, and

water reflectivity are apparent in many comparisons week-

to-week and year-to-year. Large changes in foliage become

apparent season-to-season. The montage also shows some

cases of noise (e.g., sun glare).

Perspective Differences

Although surveys often captured the same scene, perspective

differences occurred due to the fact that the images are

captured from a mobile robot. The camera trajectory was

typically at least slightly different between surveys, while

Factors Affecting The Trajectory
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Figure 6. Factors affecting the boat’s trajectory and their

occurrence in the dataset. Although some factors were present

throughout a survey (high water level, wind), others were

localized to specific places (fishing lines, automation error,

collisions, and new obstacles). A combination of these factors

affected several surveys.

sometimes factors were present that contributed to more

substantial variation in viewpoint, as shown in Fig. 6. For

example, the entire trajectory changed in times of high water.

Aside from the fact that the camera has a fixed height

from the lake’s surface, more water meant the boat moved

more inland. Strong winds also skewed the boat’s trajectory

because power to the boat’s motors was set to a constant

value. Fortunately, in those cases the boat could still capture

a survey automatically. Perspective differences also occurred

when manual control was required.

The boat’s trajectory was also effected during the variable

amounts of time it was in the company of a swan. A pair of

swans occupied Symphony Lake. They were always peaceful

towards the boat. Often during nesting season (late March

through early May) the male exhibited its dominance nearby.

It learned how to divert the boat from its path (swim up a side

of the boat), which it typically did near the island (the annual

location of the swans’ nest). On these occasions we manually

steered the boat on its path, at a comfortable distance from

the swan, but we were unsuccessful if the boat was beyond

the line of sight.

Variation in Appearance

The fact that images are captured outdoors adds to the

variation in appearance caused by perspective differences.

Illumination is, for example, non-uniform and varying, and

a function of the sun’s position in the sky and the particular

weather pattern. The sun’s position varied, in turn, with the

time of the day and the day of the year. The more sun, the
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Figure 7. Occurrence of particular weather patterns in the

dataset. The surveys spread well between sunny and overcast.

In general, we avoided deploying the robot on rainy days. Two

surveys captured fog.

stronger the illumination, yet the stronger the shadows. The

more direct sun, the more intense the sun glare.

Figure 7 shows that the surveys varied well from sunny

to overcast. Other weather patterns were harder to capture.

Rainy days were avoided because raindrops on the dome

of the PTZ camera blurred the images. Fog occurred

infrequently. Snow rarely accumulated in more than trace

amounts. Nevertheless, the frozen lake precluded its capture

when it was there. Also, none of the surveys captured the

spectacular visuals of inclement weather. Thus, the dataset

is without some common weather patterns, which might be

part of some roadside datasets.

Variation in appearance in our dataset is perhaps stronger

than in street datasets because our surveys captured a natural

environment. Most images captured flora, which changed

significantly across seasons. In the winter the background

can be seen through trees and bushes, but in the summer

and the fall it is occluded. The structures of some plants are

occluded by their own foliage, which makes their recognition

and association across seasons difficult. Foliage also often

lacks strong features, and resembles nearby plants.

Being on a lake means that the bottom 18% of each

image captures water, which varies from murky, to wavy, to

reflective. Although a comparison of two images may be a

success if the water is disregarded, it can interfere with the

process. The flora, the shoreline, and the water blend together

on days when the water is reflective. Water does, however,

add scene context.

Several kinds of noise also add to the variation in

appearance of the images (see Fig. 8). They typically show

up as sun glare, distortions, or occlusions. Sun glare was the

most prominent (per image and for how long it affected the

images). It reduced image contrast and also caused other

lens flare artifacts. Dust spots were also often visible in

surveys with strong illumination. Debris like pollen and

insects sometimes occluded the scene.

Discussion

Symphony Lake Dataset is novel as a robotic vision dataset

because it captures an unstructured environment as it evolved

week-to-week over three years (see e.g., Geiger et al.

2013; Glover et al. 2010; Milford et al. 2014; Naseer

et al. 2017; Valada et al. 2016; Milford and Wyeth 2012;

Noise in Scene Appearance
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Figure 8. Significant noise was present in many surveys. Sun

glare was worse than other types of noise in terms of how much

it changed images, how many surveys it was present in, and

how many images per survey it affected. Specular reflections on

the camera dome are apparent in many images on days of

strong illumination. Occasionally, other types of noise

obstructed the camera view (raindrops, pollen, insects).

Sunderhauf et al. 2015; Dong et al. 2016; Skrede 2013, for

examples of more structured, less frequent, and/or shorter

time span datasets). A natural environment is dynamic,

which means more can change in a smaller amount of time.

Our environment has trees, water, birds, and other flora and

fauna of a lakeshore, with some buildings in the background.

Sometimes a lot of variation occurred between weeks.

Our dataset is interesting for the challenge it brings

to perception. Data association across surveys would

have to address the variation in appearance of a natural

environment. Many different approaches have been proposed

to improve condition–invariance in different environments

(see e.g. Lowry et al. (2016) for a review of methods

for place recognition; see e.g., Roy and Isler (2016) for a

method designed for surveying apple orchards). In contrast

to indoor environments and suburban streets, the most

persistent feature of a natural environment may be its 3D

structure (Griffith and Pradalier 2016).

Our dataset also presents a challenge to the SLAM

community. The size and the number of surveys requires

scalable optimization. Each survey potentially has hundreds

of thousands of landmarks and thousands of poses. Because

standard local image features lack robustness to the variation

in appearance, multiple sets of landmarks may have to be

used to represent the environment. Optimization must also

deal with incorrect correspondences and loop closures (as

in Sünderhauf and Protzel 2012; Olson and Agarwal 2013;

Latif et al. 2013; Pfingsthorn and Birk 2016).

Success in these spaces could enable work towards iden-

tifying and characterizing changes in natural environments.
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Through a manual comparison of images from 10 consec-

utive surveys (Griffith and Pradalier 2017), we know of

several changes that occurred. For example, after a flood a

large tree fell into the water. Automated methods for change

detection would likely find more and more subtle changes.

This work would help automate search and rescue along

forest trails, scouting for threats in natural environments,

surveilling secured sites, environment monitoring, disaster

response, and precision agriculture.
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