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I. INTRODUCTION

The geometry of a natural environment may provide a
basis for visual data association across seasons. Time brings
changes in appearance due to illumination, weather, and
foliage, which can make visual data association challenging
even for humans [1]. Yet, extremely precise visual data
association across seasons is possible, which some seed-
caching corvids demonstrate from the autumn into the winter,
spring, and summer [2]. Indeed, the use spatial information
is a primary mechanism with which these birds identify
places [2]. A similar feat may be possible using mobile
robots if scene structure is made a primary mechanism of
visual data association.

This abstract presents initial work towards Reprojection
Flow: exploiting scene structure for visual data association.
In this new approach, image registration provides the initial
data association between consecutive surveys, SLAM among
all surveys captures scene structure in a globally consistent
map, and scene structure within image registration provides
data association across longer spans of time. This last step
is Reprojection Flow, in which 1) co-visibility is defined
according to the visibility of reprojected points; and 2)
reprojected map points provide anchors to guide image
registration. We applied these methods to four surveys of a
lakeshore captured by a mobile robot and acquired promising
results.

II. RELATED WORK

Environment monitoring is a topic of several recent papers,
but many solutions still lack robustness to variation in
appearance of natural environments. Consumer–priced digital
cameras have resulted in an explosion of freely available,
repetitive scans of many places over long periods of time,
which makes it possible to see trends (e.g., global warm-
ing) [3]. Yet, in relying on point–based features to construct
time-lapses, which lack robustness to variation in appearance
of the environment, only a subset of images may be used [3].

Cheap video cameras have also increased the spatial scale
of observations for monitoring applications. Large swaths of
an environment can be captured and analyzed if the same
path is walked multiple times. Once images of the same
places are identified, a homography that is estimated using
point–based feature matches may be used to more closely
align images [4]. The alignment precision could, however,
be lower than image registration techniques [3].
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Mobile robots may be able to capture large swaths of
an environment autonomously, which could lead to more
consistent observations of a place. The use of robots also
means a larger sensor suite may be utilized to further simplify
data association. Dense laser scans have led to detecting
changes on a willow tree across seasons [5], and identifying
crop growth for precision agriculture [6]. In case a laser is
unavailable, precise visual data association is possible be-
tween two images of the same scene using image registration
(e.g., SIFT Flow [7]).

Our prior work demonstrated precise visual data associa-
tion for consecutive surveys of a natural environment [1].
There, visual SLAM and SIFT Flow (applied in that or-
der, and SIFT Flow was applied without extra constraints)
outperformed other state-of-the-art techniques for registering
surveys. In registering non-consecutive surveys, however, the
number of precise alignments decreased with time. We aim
to overcome this limitation of appearance–based techniques
using Reprojection Flow.

III. METHODOLOGY
A. Image Registration

The best techniques for data association in a natural
environment utilize scene structure. SIFT Flow is among the
best, which registers whole images of point–based features
using an MRF. In minimizing the alignment energy, scene
structures are matched and used as anchors to align the rest
of the image. Because the method is designed for non-rigid
registration, it can align images of different scenes, but it
lacks basic feature matching constraints. Thus, in using it
for monitoring applications, in which images of the same
scenes are aligned, we add epipolar constraints and match
consistency constraints to improve the alignment quality.

Enforcing epipolar geometry with data association is dif-
ferent for an MRF than for point–based features. First, SIFT
Flow is run without constraints at the top layer of its image
pyramid. Between layers, feature matches from the previous
layer are used with RANSAC to estimate a fundamental
matrix. This is used to weight the data terms of the MRF in
order to constrain image alignment to epipolar lines.

Match consistency constraints ensure that the flow image
that aligns one image to another is consistent with the
flow image for the reverse alignment. It is, e.g., useful for
eliminating alignment errors due to reflective surfaces. This
constraint is enforced using images from the top layer of
the image pyramid. Given a flow image for one direction,
the hypothesis space in the reverse direction is weighted to
be more consistent with it. After several iterations, the most
consistent flow is used for full-resolution registration.



B. Visual SLAM

A map of the environment also encodes scene structure,
which is obtained using visual SLAM. Visual SLAM jointly
optimizes the estimates of the camera pose and the visual
features in the environment (i.e., the map). In this case, the
map consists of features from visual odometry; up to 300
KLT feature tracks per image. To acquire one consistent
map for multiple surveys, the output from image registration
is used to map each KLT feature onto images from other
surveys. Thus, several visual odometry features are observed
several times both within and between surveys.

Observations of visual odometry features across surveys
are obtained using the highest quality image alignments.
First, the image pairs that align best between two surveys
are found. Given an image from one survey, the search for
the image that aligns best in the other survey is run on the
set of images from the same general position (similar GPS
and compass values). During the search, image registration is
only run at the top layer. Given a full–resolution alignment,
the KLT features are mapped to the registered image, and
only the inliers according to epipolar geometry are utilized
as measurements for SLAM.

C. Reprojection Flow

Given scene structure, the first question is what images
to align between surveys. This is non-trivial if appearance–
based matching becomes unreliable. Because the robot’s
poses are accurate (due to SLAM), the image with the
closest pose may match best. However, this heuristic does
not maximize co-visibility. Instead, we define co-visibility
using the reprojected 3D map points and the robot poses.

That is, for an image in one survey, the one from a
different survey that it is aligned with has the highest co-
visibility of map features. Co-visible points are those that
each pose sees or that neither sees. Other points are those
that one sees but not the other. We set up a contingency
table in this way, and then apply the G-statistic to compute
co-visibility. The G-statistic comes from statistical analysis
and is used to measure independence between two variables.

Given two images of the same scene, the second ques-
tion is how to obtain robust image registration. In align-
ing consecutive surveys, image registration works because
appearance–based scene structure acts as anchors, which pull
the rest of the image into alignment. The more surveys are
separated in time, however, the fewer the anchors. Fortu-
nately, because the map and the poses are consistent (after
SLAM), points in the map from one survey can be projected
onto an image from a different survey to provide the anchors
for image registration. Reprojected points define matching
constraints at particular pixels (as weights to the data terms
of the MRF), but they also provide epipolar constraints for
the entire image before appearance-based matching, and can
anchor the match consistency constraint.

IV. EXPERIMENTS

Both Reprojection Flow techniques were evaluated using
four surveys of a 1km lakeshore that were captured using the

TABLE I
ALIGNMENT ENERGY (LOW-RES) FOR TWO CO-VISIBILITY METHODS

BETWEEN IMAGES FROM A SEP. 11 SURVEY TO OTHER SURVEYS.

Survey Date Sep. 19 Sep. 26 Oct. 3

Closest Pose 1.14± .2 .99± .2 1.16± .1
Co-Visibility 1.11± .1 .97± .1 1.14± .1

Results are multiplied by a factor of 106.

TABLE II
ALIGNMENT ENERGY FOR TWO IMAGE REGISTRATION METHODS

BETWEEN IMAGES FROM A SEP. 11 SURVEY TO OTHER SURVEYS.

Survey Date Sep. 19 Sep. 26 Oct. 3

SIFT Flow 6.28± .4 5.94± .4 6.47± .3
Reprojection Flow 6.26± .4 5.94± .4 6.34± .3

Results are multiplied by a factor of 108.

Kingfisher Autonomous Surface Vehicle. The surveys were
captured between Sep. 11 and Oct. 3, 2014. The data we used
consisted of the robot’s pose from GPS and the compass, as
well as 704x480 images, captured twice per second. The
evaluation was limited to a survey section about 1/5 the size
of the full lakeshore to reduce the size of the optimization
problem. Image alignment energy is used for the analyses,
which is lower for better alignments.

Image pairs selected using Reprojection Flow reach lower
alignment energies (on average) than those selected using
the closest pose, as shown in Table I. This is because they
are closer to the same scenes. They are found because co-
visibility is a function of both the camera pose and the
observed scene points, rather than only a function of pose.

Using the co-visible image pairs, an additional improve-
ment in alignment energy is achieved using Reprojection
Flow and other image registration constraints, as shown in
Table II. A slight improvement for all three surveys is due
to the epipolar constraints. Reprojection Flow adds a little
noise to the Sep. 19 and the Sep. 26 survey, which already
align very well. Match consistency significantly improves
the alignments for the Oct. 3 survey, which has a lot of
reflections. Reprojection Flow also significantly improves the
alignment energy of the Oct. 3 survey.

These results support Reprojection Flow, and warrant a
larger study with more surveys across a longer span of time.
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