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Abstract—This paper establishes an autonomous monitoring
framework to augment a human’s ability to detect changes in
lakeshore environments. This is a large spatial and temporal
scale study, which analyzes data from eight different surveys of
a lakeshore collected over 11 months with an autonomous surface
vehicle. Despite the variation in appearance across surveys, our
framework provides a human with aligned images and a way
to readily detect changes between them. First visual SLAM is
used to find a coarse alignment of images between surveys, and
second, SIFT Flow is applied to achieve dense correspondence.
The aligned images are flickered back-and-forth in a user display,
which enables a human to rapidly detect changes. Results
show our method can align images in the midst of variation
in appearance of the sky, the water, changes in objects on a
lakeshore, and the seasonal changes of plants.

I. INTRODUCTION

This paper introduces a framework for the data association
of images of a natural environment (see Fig. 1), with which an
autonomous surface vehicle (ASV) enables lakeshore monitor-
ing. Robots promise a flood of high resolution data in surveys
over large spatial and temporal scales, as in monitoring tasks
on lakes, farms, and secured sites. Yet, the data association
needed to automatically process surveys remains difficult.
Images vary with the time of day, the weather, the seasons,
etc. Most related work addresses lighting changes in urban
environments and is limited to sparse, feature-based corre-
spondence. Enabling high-resolution, pixel-wise comparisons
between surveys requires dense correspondence, which cuts
through the variation in appearance of natural environments.

This paper achieves dense correspondence between surveys
of a natural environment. Our framework provides a human
with aligned images and a way to readily detect changes
between them. First, visual SLAM is used to identify images
of the same scene from different surveys. Second, SIFT Flow
is applied to achieve dense correspondence. A user interface
displays the aligned image pairs, which are flickered back-
and-forth to enable rapid inspection.

This study analyzes data from eight different surveys of a
lakeshore collected over 11 months with an ASV. We capture
significant variation in appearance across surveys. Despite
this, results here indicate our framework can precisely align
a majority of the scenes. Although our setup and experiments
survey a lakeshore, this approach is applicable to other types
of vehicles and environments with few changes.

Fig. 1. Our framework for coarse-to-fine alignment of surveys of natural
environments, which combines visual SLAM and SIFT Flow.

II. RELATED WORK

The field of Simultaneous Localization and Mapping
(SLAM) provides a foundation for localizing a robot and
mapping monitored spaces. Large spatial scales of natural
environments, however, challenge SLAM systems. Most ap-
proaches that address scalability split optimization into smaller
problems. For example, Ni et al. [15] divide-and-conquer
the SLAM problem using submaps, which are optimized
separately and then again during recombination. This paper
uses iSAM2 [10], which restricts optimization to the subset of
variables affected by new measurements.

Long outdoor deployments also challenge SLAM systems.
Data association in an outdoor environment becomes more
difficult as its appearance varies over time. Many different
approaches have been proposed to address this. Some rely on
point–based features for data association [6, 4, 9]. Because
point–based feature matching is often not robust to outdoor
environment variation, some work has focused on directly
using, or modifying, whole or parts of images [14, 2, 13].
This paper aligns whole images using SIFT Flow, which
combines the accuracy of point-based feature matching with
the robustness of whole–image matching.

Some papers have already started to address working in



a lake and mapping the location of a lakeshore, which is
is an essential task of lakeshore monitoring. Heidarsson and
Sukhatme [7] map a lakeshore and the locations of obstacles
from the visual perspective of their ASV. In case a robot
repeatedly visits the same lakeshore, Hitz et al. [8] show that
3D laser scans of a shoreline can be used to delineate some
types of changes. Their system distinguished the dynamic
leaves from the static trunk of a willow tree in two different
surveys collected in the fall and spring.

We first introduced our work towards autonomously travers-
ing the perimeter of a lakeshore while surveying it in [5].
There we speculated the structure of a scene could serve as
the basis for data association. Accordingly, in this paper visual
SLAM and SIFT Flow use the structure of a lakeshore to
align image sequences from consecutive surveys. A human
compares the aligned images, which exploits human skill at
detecting changes between flickering images of a scene.

III. EXPERIMENTAL SETUP

A. Robot

We used Clearpath’s Kingfisher ASV for our experiments. It
is 1.35 meters long and 0.98 meters wide, with two pontoons,
a water-tight compartment to house electronics, and an area
on top for sensors and the battery. It is propelled by a water
jet in each of its pontoons, which can turn it by differential
steering. The battery lasts about an hour at 0.4 m/s with its
current payload.

Our Kingfisher has a pan-tilt camera, a laser rangefinder, a
GPS receiver, a compass, and an IMU. The camera captures
704x480 color images at 10 frames per second. The laser
rangefinder scans a point just above the water along a 270
degree arc, which provides a distance estimate for objects
closer than 20 meters.

B. Environment

We used our ASV to survey Symphony Lake in Metz,
France. The lake is about 400 meters long and 200 meters wide
with an 80 meter–wide island in the middle. The nature of
the lakeshore varied, with shrubs, trees, boulders, grass, sand,
buildings, birds, and people in the immediate surroundings.
People mostly kept to the walking trail and a bike path a few
meters from the shore. Fishermen occasionally sat along it.

C. Behavior

We used a simple set of behaviors to autonomously steer the
robot around the perimeter of the lake and the island. As the
boat moves at about 0.4m/s, a local planner chooses among
a set of state lattice motion primitives to keep the boat 10m
away from the lakeshore on its starboard side. A predefined
waypoint along the perimeter marks the transition to surveying
the island. At this point the pan-tilt camera is rotated from
pointing starboard–side to pointing port–side, and the planner
begins optimizing the boat’s proximity to land on its port
side. The robot can perform an entire survey autonomously;
however, we occasionally took control to swap batteries, fix
unexpected control failures, or avoid fishing lines and debris.

We deployed the robot up to once per week over a period
of 1.5 years, which began August 18, 2013. Each survey was
captured during the daytime on a weekday in sunny or cloudy
weather. This paper analyzes data from eight different surveys
captured in 2014, which span 11 months of variation.

IV. METHODOLOGY

Enabling interactive monitoring between surveys consists of
a two–step coarse-to-fine alignment process. First, the rough
location where each image was captured is identified. Second,
a pixel-wise alignment is computed for images of the same
scene from two different surveys. These steps consist of Visual
SLAM and SIFT Flow, respectively.

A. Data Collection

A survey represents a collection of images, a trajectory of
camera poses, and other useful information about the robot’s
movement. During a survey, k, the robot acquires the tuple
Ak ∪ {Ikt , pkt , ωk

t } every tenth of a second, where t is the
current time, Ikt is the image from the pan-tilt camera, pkt ∈
SE(3) is the measured camera pose, and ωk

t is the boat’s
angular velocity as measured from its IMU. The camera pose
combines the boat’s GPS position, the compass heading, and
the pan-tilt camera’s position.

B. Visual SLAM

Finding nearby images in two long surveys is possible
using raw measurements of the camera pose, but because
these measurements are prone to noise that could lead to
trying to align images of two different scenes, we use a
visual slam framework to improve our estimates of the camera
poses. Landmarks for visual SLAM are obtained with generic
feature tracking from OpenCV, which is based on detecting
300 Harris corner features and then tracking them using the
pyramidal Lucas–Kanade Optical Flow algorithm as the boat
moves (see [5] for details). We use graph–based SLAM to
obtain optimized camera poses and landmark positions, which
are represented in a factor graph along with the constraints
between them (see Fig. 2). The GTSAM framework [3] is
used to perform the bundle adjustment step. To reduce data
redundancy and speed up computation time, each survey is
down–sampled in time by a factor of five for optimization.

A factor graph is constructed over time as a survey is
acquired. A node, xt, is added for the camera pose at each
time step, t. A node, lj , is added for the position of each
newly observed landmark. We also add a node, vt, for the
velocity of the robot at each time step, which adds a bit
more complexity to the factor graph. The boat’s relatively
constant velocity provides a kinematic constraint between two
consecutive poses. Usually odometry readings provide the
kinematic constraints. Because our ASV is, however, propelled
by jet thrusters rather than wheels, typical odometry readings
are lacking.

Whereas nodes in the factor graph represent the variables
to be optimized, factors in the factor graph describe the
constraints on each variable. The measured camera pose, pt,



lj

mj
t−1m

j
t mj

t+1

pt−1 pt pt+1

xt−1 xt xt+1

vt−1 vt vt+1

qt−1 qt qt+1

ut−1 ut

rt−1 rt

Fig. 2. Factor graph of our SLAM problem. Nodes define landmarks (blue),
the robot’s pose (green), and the robot’s velocity (purple). Factors (black)
define constraints on the values of nodes. The dotted line denotes a smart
factor, which isolates one landmark’s constraints during optimization.

constrains xt. Landmarks seen at xt are constrained to project
their 3D positions, lj , to their observed 2D pixel locations,
mj

t . The factor, ut, describes xt+1 as a function of xt, vt, and
some deviation. Consecutive velocity nodes are related by a
factor, rt, which forces the velocity to change slowly between
time steps. A prior, qt, keeps vt relatively constant.

The optimized variable assignment, xt|nt=1, lj |zj=1, and
vt|nt=1, reduces the error among all the variables according to
how tight each constraint is. The tightness of a constraint is its
expected standard deviation, which is manually specified. For
example, the standard deviation of the compass measurement
is roughly 10 degrees due to distortions of the magnetic field
during peak motor currents. Because several noisy sensor
readings are combined to describe the value of a variable, an
optimal variable assignment balances the error among them.
The goal of optimization is to find values for all the variables
that minimize the total error in the factor graph.

We perform optimization using iSAM2 [10]. iSAM2 con-
verts a factor graph into a Bayes tree to make incremental
bundle adjustment computationally feasible. A Bayes tree hi-
erarchically organizes the variables with large amounts of error
(the ones measured most recently are usually on top), which
prioritizes the optimization. Variables’ values are refined over
several iterations using the Levenberg–Marquardt algorithm.

To further reduce the computation time of optimization, we
also use smart factors [1]. Smart factors employ the Schur
complement to split a large optimization problem into smaller,
equivalent subproblems. They also eliminate landmarks ob-
served through a degenerate motion or only once. In this paper,
the optimization for each landmark, lj , is isolated with them.

The result of this process is optimized camera poses, xkt |nt=1,
and landmark positions, lkj |zj=1, for each survey, Ak. We
use the optimized camera poses to identify images of the
same scene from different surveys. We use the optimized
landmark positions to compute the average reprojection error
for each image, which indicates how closely an image captures
its true scene. Using the values for, lkj |zj=1, and the initial
measurements, fj = mj

tfirst
, ...,mj

tlast
, the reprojection error

was found to average around 3 pixels for all the surveys.

C. Image Registration

Given two different images of roughly the same scene, we
aim to facilitate their comparison using image registration.
Finding a dense correspondence is, however, challenging due
to the dramatic variation in appearance between the images.
The structure of the scene may be their most consistent fea-
ture [5]. Accordingly, we align images using SIFT Flow [11],
which is designed to register similar structures even if the
images capture different scenes.

The first step of image registration is to determine which
two images to align. Here we use the image Ik−1

j in survey
k − 1 that most likely captures the same scene as image Iki
in survey k. They capture the same scene if the camera was
at a similar location and pointed at the same thing. Thus, the
L2 distance is computed for both the camera position and the
position 10m in front of the camera.

SIFT Flow starts by constructing a ‘SIFT image’ of each
image, which defines the data to be aligned. A SIFT image
has the same height and width as the original image, but with
128 channels. Each pixel in the original image is essentially
replaced by a 128-byte SIFT descriptor (see [12]). Local
gradient information from the 16x16 pixel neighborhood of
a pixel is captured in the feature. Two pixels match if the L1

distance between their descriptors is low (i.e., less than 300).
A dense flow, w, specifies how to align one SIFT image,

Sk−1
j , to the other, Sk

i , and is found by minimizing a cost
function over candidate flows. For pixel p in Sk−1

j , the
candidate flow wp = {up, vp} determines what pixel it aligns
with in Sk

i , where up, vp ∈ [−h..h], and h is the search
window parameter. The cost of w sums the SIFT descriptor
distances, regularization terms, and smoothness terms:∑

p

min(|Sk−1
j (p)− Sk

i (p+ wp)|1, t) (1)

+
∑
p

ν|up + vp|

+
∑

q adj. to p

min(α|up − uq|, d) +min(α|vp − vq|, d)

The empirical parameters ν=0.005*255, α=2.5*255, and
d=40*255 define the weight of each term and were held
constant. The value of t is the median of all the descriptor
distances computed between the two images. The best flow,
∗
w, dictates that descriptors of aligned pixels be similar, smaller
flows be preferred, and adjacent pixels have similar flows.

The search for the best flow,
∗
w, progresses through image

pyramids, which reduces the search time. An image pyramid
consists of recursively halved images (four in this paper). The
best alignment identified at the low-resolution image pair is
refined through increasingly higher resolutions. From low- to
high-resolution, h = 5, 3, 2, and 1, respectively.

The result of this process is a flow, ŵ, which specifies how
to interpolate Ik−1

j to align with Iki , and an alignment score,
∇k

j . The score is only computed from the first term in Eq. 1
(the SIFT descriptor distance). We repeat this process for every
fifth image in Ik to enable survey comparison.
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Fig. 3. Aligned image pairs for six consecutive places along the lakeshore from the June 25, 2014 and the June 13, 2014 surveys. The mowed grass is one
of the more salient changes between them, which appears in all six.

Fig. 4. The quality of the aligned images between the June 13, 2014 and the
June 25, 2014 surveys around the entire perimeter of the lake and the island.
Representative examples of each alignment class are shown.

D. Survey Comparison

Our user interface enables an end user to rapidly inspect
surveys. A human is shown a subset of the aligned images
to reduce redundant comparisons. New sections of the shore
start about every 9.27m due to the camera’s focal length and its
10m distance from the shore. Image pairs selected for display
have a low reprojection error after optimization (less than 8
pixels on average), a low alignment score after SIFT Flow
(less than 1710 per pixel), and advance the survey comparison
up the shore the most (up to 9.27m). If these thresholds are
not satisfied, only the alignment score is used. Otherwise the
selected image pair is the one of the next section of the
lakeshore, 9.27m away.

Each image pair is flickered back-and-forth in the display
to draw attention to changes. Although only a subset of all
the aligned image pairs are selected for display, the time spent
inspecting every scene can add up for large lakes in a side-by-
side comparison. Fortunately, humans are highly sensitive to
changes in images of a scene if the images are flickered back-
and-forth [16]. Therefore, in our display a user scrolls through
the selected images from a survey while each image and the

one aligned to it flicker back-and-forth. In case two images
align poorly, the user can toggle the side-by-side display of
the non-warped images.

V. EXPERIMENTS

A. Alignment Quality Between Two Surveys

The first experiment evaluates how well our framework
aligns two surveys, which consists of hand–labeling the quality
of their aligned image pairs. We assessed the alignment quality
for the surveys from June 13 and June 25. The quality is
divided into three classes: precise, coarse, and misaligned.
(precise) Ideally, each image pair would closely align, or at
least be similar enough to quickly spot any changes between
them. (coarse) However, perspective differences may be dif-
ficult to compensate for. Additionally, warping an image can
introduce artifacts, which obscure changes. (misaligned) In
the worst case, unrecognizable images or images of different
scenes may be selected for alignment.

The start of the comparison is shown in Fig. 3 with
archetypical examples from each class and the quantitative
analysis in Fig. 4. The comparison for the entire lakeshore
and the island involved 155 different image pairs. Of those,
81 were precisely aligned. Change detection was still possible
in an additional 56. A correspondence was not immediately
discernible in the remaining 18.

Changes were easily discernible as the most salient thing in
precisely aligned images because they flickered on and off.
The rest of the scene was mostly static. The major struc-
tures (tree trunks, buildings, large branches) usually entirely
overlapped. Minor features (e.g., leaves and twigs) sometimes
slightly shifted or changed color. In some cases, motion
parallax was observed in a few objects due to perspective
differences; minor noise cases were counted as precise.

The side-by-side display was useful for identifying changes
in coarsely aligned images. Images initially too far apart, with
too few salient features, or with artifacts due to SIFT Flow
were not aligned well and appeared noisy in the flickering
display. Extra time was required to rule out the different
sources of noise.

The misaligned images were difficult to compare in either
display. They occurred at curves and transitions where the
camera’s position significantly varied. For example, in one
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Fig. 5. Surveys from six different dates are aligned to the survey from Oct. 10, 2014 at two different sections of the lakeshore, denoted A1-A6 and B1-B6.
Each warped image is shown with the reference image it aligned to, which is slightly different for each comparison.

survey the pan-tilt camera switched from facing the island
to facing the lakeshore while in the other survey it still faced
the island. Different scenes were matched near the south end
of the lake. In other cases, images only slightly overlapped.

B. Robustness to Time Between Surveys

Because models of the environment have limited lifespan
and lose applicability as time passes, the second experiment
tests the suitability of our approach for infrequent surveys
across seasons. We evaluate the quality of an alignment at two
different sections of the lakeshore for increasingly longer spans
of time. Seven different surveys are used for this analysis, of
which one captured on Oct. 10 is a reference to which the other
six are aligned. Four fall surveys from Oct. 24, Oct 29, Nov. 7,
and Nov. 14 represent approximately two-, three-, four-, and
five-week time gaps. A summer survey from June 25 and a
winter survey from Jan. 22 represent 3.5 month and 10 month
time gaps. Rather than optimize for precisely aligned images
that advance the comparison to the next 9.27m section of shore
(see Section IV-D), we optimize for precisely aligned images
closest to the two locations.

Figure 5 shows the results. We include the reference images
from the Oct. 10 survey because images from different surveys
best align to slightly different reference images. The number
of each case of alignment quality is consistent with what’s
shown in Fig. 4. A precise alignment was found for A1-A3,
A6, and B1-B3. Coarse alignments were found for A4, A5,
and B4. B5 and B6 were the only two misalignments.

The natural variation in appearance between surveys mostly
had little effect on the quality of the alignments. In A1, the

colors are different, the weather is sunny instead of overcast,
and the leaves are a different color or fallen. Although some
artifacts are introduced near the shore of A5, both A5 and A6
align well. The same can be said for B1-B4.

The misalignments in B5 and B6 occurred because a
large tree fell into the water between the surveys. During a
comparison this should be seen as a “change.” This change
is, however, somewhat obfuscated because the aligned images
capture different perspectives of the shore: in one case the
boat swerves to miss the obstacle in the water, in the other
the boat’s path is unobstructed. Thus, for these two cases, a
good alignment with the survey on Oct. 10 probably involves
images of a slightly different location.

VI. DISCUSSION

Whole images worth of descriptive features enable dense
correspondence for natural environments. This contrasts the
feature matching strategy of [12], which prefers a few highly
descriptive features for sparse feature matching. Whereas too
few sparse features may match between lakeshore surveys to
enable data association along those lines [5], finding dense
correspondence with the best feature candidates through whole
image alignment provides robustness to natural variation in
appearance. This is similar to the recent work of [13], which
has found that matching patches of images, rather than point-
based features, is better suited for outdoor environments. In
contrast to their work, however, ours captures advantages of
both cases, by optimizing for whole image correspondence
derived from local feature matches.

That said, finding any correspondence between images is
usually only possible if they have some common structure.



Salient structures anchor the correspondence between images.
Everything else has a secondary contribution to the resulting
alignment. A good example of images with salient structure is
shown in Fig. 1. The opening along the shore is framed with
strong tree-trunk features. Although locally individual features
may appear somewhat different, globally a good correspon-
dence between the images becomes visible. A good example of
images without salient structure is shown in Fig. 5.B5. Perhaps
the most salient features occur at the tree line, yet because the
images are captured from different perspectives this is different
between the images. Additionally, the reference image has
strong features near the bushes (the tree in the water), which
are hard to match in the aligned image.

This shows that changes between surveys can reduce the
alignment quality. Small changes (e.g., people appearing) and
changes with little structure in them (e.g., clouds) have less
impact because salient structures of the scene still match. A
precise alignment is less likely if a salient structure changes
between two surveys (with other sources of variation) because
as much information indicates an alignment is wrong as
indicates is correct. However, because our system performs
coarse-to-fine alignments, there is still a high likelihood of at
least a coarse alignment between images.

Our coarse-to-fine approach makes image alignment pos-
sible. In this paper, visual SLAM provided the coarse align-
ments. If we tried to use SIFT Flow on its own, the compu-
tation time to run it (about 30 seconds per image) would be
prohibitive. It is inefficient to compare every image between
two surveys to find the one with the best alignment score.
Additionally, although the alignment score is accurate most of
the time, a low score is sometimes reported for images of dif-
ferent scenes. Coarse-to-fine alignment reduces this possibility.
Therefore, the combined approach of visual SLAM and SIFT
Flow makes robot–enabled lakeshore monitoring possible.

VII. CONCLUSION AND FUTURE WORK

This paper introduced a framework for lakeshore monitor-
ing, which enables a human to readily inspect images from two
different surveys. The framework performs image alignment in
a coarse-to-fine way, which bypasses many limitations arising
from the large spatial scale. Dense, pixel-level correspondence
is achieved between surveys, which eludes the temporal lim-
itations inherent in data association across time in natural
environments. An end-user who monitors a lakeshore using
our framework can readily identify how a scene changed due to
the flickering of images they compare. Overall, these analyses
were validated using several surveys of a lakeshore captured
over a long period of time.

The vast amount of data captured for this kind of study
makes working with it, currently, the biggest limitation. In
order to create analyses that span our entire dataset, in future
work we plan to improve our framework in ways that reduce
its computation time. For example, because each alignment is
found independently of the others, the full computation time
to perform SIFT Flow is required on all the images. This
is inefficient because an alignment at one time step may be

very similar to the following one. However, tying the search
together across a sequence of images may reduce the total
computation time, boost the alignment performance, and lead
to more consistent flow image to image.
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