
Towards Autonomous Lakeshore Monitoring

Shane Griffith, Paul Drews, and Cédric Pradalier

GeorgiaTech Lorraine - CNRS UMI 2958
Georgia Institute of Technology

{sgriffith7,pdrews3,cedric.pradalier}@gatech.edu

Abstract. This paper works towards autonomous lakeshore monitor-
ing, which involves long–term operation over a large–scale, natural en-
vironment. Natural environments widely vary in appearance over time,
which reduces the effectiveness of many appearance–based data asso-
ciation techniques. Rather than perform monitoring using appearance–
based features, we are investigating whether the lakeshore geometry can
provide a stable feature for this task. We have deployed an autonomous
surface vessel 30 times over a duration of 8 months. This paper describes
our initial analyses of this data, including our work towards a full simul-
taneous localization and mapping system and the shortcomings of using
appearance–based features.
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1 Introduction

Efficiently monitoring a natural environment requires detecting and then explor-
ing places that appear to be novel. With natural variation of appearance over
short-, mid-, and long-term time scales, almost every location in an outdoor en-
vironment could be said to have changed, and thus, be a candidate for extensive
exploration every time a robot is deployed there. The task of monitoring an ex-
pansive outdoor environment dictates a robot acquire an accurate model of the
space. Yet, it is unclear how a robot could begin to acquire a model that would
enable it to efficiently perform monitoring tasks.

Stationary monitoring tasks involve placing a camera in a predetermined lo-
cation, which can simplify change detection because the camera is always point-
ing at the same spot and registering minor scene variation over consecutive
frames. In this case, change detection is mostly unaffected by natural scene vari-
ation due to the high frame rate. Robotic monitoring, in contrast, involves a
moving camera that captures intermittent snapshots of a scene. At first approx-
imation, change detection following the stationary monitoring approach would
require searching for images to compare and then finding an alignment between
them. However, because the robot is capturing images of a non-planar surface,
there usually is not a simple transform between images to align them. Fur-
thermore, more variation accumulates between successive snapshots of a scene
because the time interval between them is large.
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Autonomous lakeshore monitoring calls for a representation that is stable
across intermittent observations. The geometry of a lakeshore may be one such
property. Some appearance–based features (e.g., SIFT, SURF) are invariant to
many types of changes (e.g., scale, orientation, illumination), yet most are too
unstable for comparing subsequent observations of a natural environment [7] [26].
However, it is the case that the appearance of many things in natural environ-
ments change with regularity, which may be possible to model in order to gain
more predictive power. Thus, a robust representation of a lakeshore might use
scene geometry as a basis for scene comparison, with spatiotemporal models of
visual appearance supplementing it.

This paper starts to investigate the challenges of modeling a lakeshore en-
vironment using an autonomous surface vessel (ASV). Because a single sample
of any outdoor environment is inadequate for capturing the distributions of its
variations, we have deployed our robot for weekly data collection, so far 30 times.
We are working towards applying SLAM techniques to extract an initial model
of the lakeshore. This paper describes the challenges of using appearance–based
features for data association between weekly surveys. This is ongoing work, in
which we continue to collect data, improve our ASV system, and generate further
analyses of our dataset.

2 Related Work

Autonomous lakeshore monitoring is a potential application of robotics for sev-
eral reasons including the need to maintain water quality [11][19], monitor the
environmental effects of dams [25], identify adverse uses of a lakeshore [25], and
survey rare plants [21]. Beyond these applications this problem is also inter-
esting for its theoretical and practical challenges. Acquiring a 3D model of a
lakeshore presents significant difficulties to the predominant 3D reconstruction
and mapping techniques.

Existing work on 3D reconstruction, structure from motion, and simultaneous
localization and mapping (SLAM) provide a well–established framework for ad-
dressing how to map an unchanging environment using camera images captured
by a robot. These techniques usually involve extracting features from each im-
age, performing feature matching between images, triangulating the 3D position
of features using the estimated camera poses, and then refining these estimates
using non-linear optimization techniques. Agarwal et al. [1] used a framework
based on this approach to reconstruct a 3D depiction of some monuments of
Rome in a day using images freely available on the internet. Davison et al. [6]
showed how a robot can map an environment using a sequence of images from
only a single camera.

Some papers have addressed the specific challenges of learning in outdoor
environments: over a large area, with multiple observations over an extended
period of time, accumulating several experiences of the same location, and in a
variety of lighting and weather conditions, which make them especially relevant
to our work. Churchill and Newman [4] present a system that avoids data asso-
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ciation and instead accumulates “multiple experiences” of scenes, which consist
of images that are localized using visual odometry and landmarks. This style
of representation may be worth exploring for using with lakeshore monitoring.
Glover et al. [7] combine two techniques for performing SLAM using images of
outdoor scenes captured at different time intervals. Their approach can map
an outdoor environment in a way that is somewhat robust to scene variation,
but it undesirably generates a lot of new descriptors for re-visited locations. The
authors speculate that their method’s shortcomings are due to the fact that map-
ping is grounded in highly variable appearance–based keypoints. Nourani-Vatani
and Pradalier [20] use optical flow to reduce feature matching time. The optimal
flow indicates the direction the robot is headed. This information is saved to a
topology, which indicates what set of visual features in the database to use for
comparison. Ki et al. [18] propose a divide-and-conquer strategy for scalable op-
timization. A map is divided into submaps, which are optimized independently,
and then combined later into a global map. Procopio et al. [22] show that an au-
tonomous robot can use near–field stereo data to learn a classifier for identifying
far–field obstacles in images. An ensemble of classifiers makes the system more
robust to wide variations in the visual appearance of different outdoor scenes.

Images of a lakeshore consist primarily of land, water, and sky, yet research
has found that different features may be more suitable for each one. Specifically,
the predominant approach for modeling things on land involves extracting visual
features (e.g., SIFT [16]); yet, mounting evidence suggests different techniques
may be better suited for capturing information about water [12][11][8]. Iqbal
et al. [12] reveal that a primary difficulty of trying to establish a fundamental
vision–based feature for water detection is due to all the possible sources of
variation in a scene. Furthermore, without the context that land provides, there
is a lack of visual features in open and deep water [11]. Instead, other sensory
modalities can be a good source of information about water, including laser [13],
and audio and proprioception [8]. Currently, our research is more focused on
representing the visual appearance of the lakeshore, rather than that of the
water or the sky.

The use of a collection of image processing techniques for scene analysis is
supported by successes modeling sources of scene variation. Sources of variation
include, for example, shadows and artifacts, and methods have been developed to
individually address each one. For example, explicitly representing the source of
illumination (and then removing its effects, e.g., [5]) may allow us to more easily
analyze how the appearance of certain plants correlates with changing levels of
sunlight. Additionally, modeling scene variation may be easier if we eliminate
effects that aren’t likely to be repeated across surveys, like image artifacts (e.g.,
due to water droplets or dust on the camera protector) [9].
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Fig. 1. The Kingfisher as it traversed the perimeter of Lac Symphonie.

3 Experimental Setup

3.1 Robot

We used a Kingfisher from Clearpath Robotics for the experiments (see Fig. 1).
The Kingfisher is an ASV propelled by a jet thruster in the end of each of its
two pontoons. It is approximately 1.3 meters long and 0.9 meters wide, with
space on top for optional sensors. Ours is equipped with an IMU, a compass,
GPS, a forward–facing fish-eye camera, a top–mounted laser rangefinder, and
a top–mounted pan-tilt camera. An onboard computer running ROS (see [23])
provides autonomous control, data logging, and communication for up to three
hours on one charge.

3.2 Lake

We deployed the robot on Lac Symphonie in Metz, France, which is about 415
meters long and spans roughly 220 meters at its widest point (see Fig. 2). Its
widest point is also the location of an island 131 meters long and 87 meters wide.
Runoff water and a small tributary feed the lake while it drains into a nearby
creek. Shrubs, bushes, trees, foliage, birds, and pedestrians abound. A fitness
path and a scenic trail encircle the lake. Collegiate and technology buildings
loom in the background.

3.3 Behavior

The robot moves along the perimeter of Lac Symphonie and then the island
with its pan–tilt camera pointed at the shore. It traverses them in a counter-
clockwise direction at an average speed of 0.5 m/sec. As it moves along the
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Fig. 2. Lac Symphonie in Metz, France from Google Maps. The blue line is approx-
imately the path the Kingfisher traversed around the lake, roughly 10m from the
lakeshore.

shore, the laser rangefinder captures a scan of distances to it, which a motion
planner uses to optimize the boat’s behavior for maintaining its 10m distance.
We chose 10m to keep the kingfisher distant enough from the shore to avoid tree
branches and shallow water, yet close enough to capture fairly high resolution
snapshots. A human intervenes using an RC controller if the boat gets too close
to tree branches or fishing lines. The boat performs one survey in approximately
an hour.

A survey along the perimeter of the lakeshore was performed as often as once
per week over a duration of ten months. From August 18, 2013 to June 13, 2014,
the robot traversed the perimeter of the lakeshore a total of 30 separate times.
Data could not be collected during weeks the lake was frozen, in rainy weather,
or if we were traveling.

3.4 Natural Scene Variation

The robot captured significant scene variation across the entire observation pe-
riod, with many instances of large scene variation between consecutive surveys.
Much of the variation in the dataset comes from natural variation in appearance
over three seasons. The trees and the bushes changed color and shed leaves,
revealing buildings and other landmarks behind them. Moles continuously bur-
rowed new mounds out of the grass. Changing water levels turned grass to mud
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and destroyed some plants. The cloud cover varied, the water rippled in different
ways, and shadows appeared in different places.

Another source of scene variation in the dataset is due to the fact that the
robot takes a slightly different path around the lake each time. Fluctuating
water levels raise and lower the robot, but also change its distance to things on
the shore. Swans occasionally affected the boat’s path if they floated past its
starboard side. The robot also sometimes got as close as 2-3 meters away from
shrubs near the shore that were too thin for the laser scan to consistently detect.

In the midst of natural scene variation, the most apparent changes in the
scene were due to the activities of people. About half the surveys capture the
construction of a new, shed–sized filtration building near the inlet to the lake.
One survey captured canoes and kayaks on the shore for a water recreation event.
Roughly a dozen fishermen held weekly competitions on Thursdays.

4 Methodology

4.1 Data Collection

This paper analyzes images primarily from two different surveys of the lakeshore.
The boat’s pose is estimated using GPS, IMU, and compass data. Images are
captured as a sequence of 704 x 480 color images at 10 frames per second. A slight
JPEG compression was applied to the images to increase the storage capacity
of the boat.

4.2 Scene Reconstruction Using SIFT

We are working towards a monocular SLAM system for building a robust map of
the environment, including dense scene reconstruction to capture the lakeshore
geometry, data association across surveys, and optimization. This paper provides
an analysis of scene reconstruction using SIFT.

Dense scene reconstruction is performed to precisely model the geometry of
the lakeshore. The standard 3D estimation techniques provide a way to construct
an estimate of the geometry from a sequence of images. Given matching points
between two images, the 3D position is triangulated using Hartley and Thurm’s
iterative linear least–squares triangulation method [10]. Dense matches along a
lakeshore enable the robot to more precisely estimate its geometry.

We initially used SIFT feature detection and matching [16] as provided by
the OpenCV [2] library for acquiring a set of matches between pairs of images.
Highly discriminative SIFT features (and other keypoint detection algorithms)
are designed to be robust to large image transformations and changes in view-
points. SIFT features are extracted from each image and then matches are found
between pairs of images by comparing their feature sets. Because a lakeshore is,
however, a mostly homogenous environment with very little change of viewpoint
between frames, using SIFT can lead to a small number of matches, which are
concentrated at high-contrast locations of each scene (e.g., buildings). Search-
ing an entire feature set for each potential match can also make the process
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Fig. 3. Snapshots of a scene along the lakeshore. The colored dots are the only features
that could be matched. top left The result of feature matching for two nearby images
in the same survey. top right and bottom The result of feature matching between
this image and the top left image.

computationally inefficient. Our feature matching experiment illustrates these
shortcomings.

5 Feature Matching Experiment

Our first experiment was useful for identifying the challenges of feature match-
ing, both in within surveys and across different surveys. We applied our initial
feature matching approach using SIFT to pairs of images of the same scene from
the same survey, and to pairs images of the same scene from different surveys.
Figure 3 shows the results. Many more matches are found between images from
the same survey than from two different surveys. In the same survey condition,
good matches are found on plants, the ground, and the building, but few are
in the sky or in the water. Far fewer matches are found for images from two
different surveys. The building is, however, the exception as its visual features
are consistently matched across the surveys.

This result shows the difficulty of finding feature matches in images cap-
tured in natural environments at different times, even if they are of the same
scene. With images of a lakeshore, the overall area of an image contributing to
a successful match is small because SIFT features are only reliably detected on
land. Additionally, the appearance of a natural scene in an outdoor environment
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Fig. 4. Point clouds of black the boat’s path around the lake, and blue the discrimina-
tive visual features in the scene, from two different surveys. Each image was generated
using the Point Cloud Library [24].

can vary dramatically over any time scale, including abrupt changes in illumi-
nation, mid-term changes in water levels, and long-term seasonal variation in
plants. Compared with flora, however, the contrast on buildings is more consis-
tent across surveys, which is partly why many more features were found on the
building.

Given that the number of feature matches on the lakeshore can be highly
variable and that they are concentrated in high-contrast areas, we next identified
the algorithm’s coverage of the entire perimeter of the lakeshore. This analysis
consisted of extracting features using SIFT, finding matches within the same
survey, triangulating the 3D locations of matched features, and then visualizing
the points in a point cloud, for an entire survey. The point clouds for two different
surveys are shown in Fig. 4. Each has enough points to show that their structures
are very similar. The density of each point cloud shows where feature matches
are found best around the perimeter of the lake. Noise is apparent in a good
portion of the 3D position estimates due to the fact that optimization has not
yet been performed on these results.

The point clouds capture much of the 3D structure of the lakeshore, but
due to the sporadic coverage of SIFT feature matching, some locations are bet-



Towards Autonomous Lakeshore Monitoring 9

ter represented than others. Many points are identified on high-contrast areas
like buildings, trees, and unique terrain. The point cloud is a bit thinner in
one survey due to the overcast weather. In general, areas with fewer points are
either not illuminated well, are part of the featureless grassy bank, or are not
viewed by the camera. In the top-left of both surveys, the low-setting sun caused
sun glare, which reduced the performance of SIFT. Due to these shortcomings
of SIFT, we are currently implementing further improvements to our feature
extraction method (namely, KLT, and optimization) for improved coverage of
natural environments.

6 Ongoing Work

6.1 Scene Reconstruction Using KLT

In light of the shortcomings of SIFT, we have identified that the pyramidal
Lucas–Kanade tracker [17] (LKT or KLT, OpenCV) provides an excellent feature–
tracking performance for our environment and experimental setup. Instead of
matching feature descriptors, the Lucas–Kanade tracker uses the brightness con-
straint and a smoothness assumption to compute sparse optical flow on features
detected by the Harris corner detector.

In practice, building reliable feature tracks over a large image sequence re-
quires a few more steps, some generic and others specific to our experimental
setup. We try to sustain a stable number (200-300) of features in each image,
while keeping them well spread over the landscape. Toward this, new feature
candidates are extracted for each image and then sorted into the cells of a grid,
as illustrated in Fig. 5. Features are only added to cells in which there are cur-
rently no features being tracked, and feature matches are only searched in a
predicted neighborhood of cells. Thus, the number of features to track in each
frame is limited, which ensures efficient computation time.

To limit the number of features ever tracked to a pre-specified maximum
(300), a feature is removed from tracking when:

– OpenCV’s Lucas–Kanade tracker cannot find a suitable match in the new
image;

– its displacement between two frames is inconsistent with the robot’s potential
displacement (e.g., vertical displacement and large overall displacement);

– it moves into a cell in which multiple features (more than 5) have agglomer-
ated (e.g., when features in the background are occluded);

– it is an outlier in a RANSAC–based fundamental matrix estimation.

The performance of feature tracking is depicted in Fig. 6. The number and
the length of the black feature path shows that we can obtain reliable and stable
features over fairly long sequences in a single survey. There are, however, several
challenges associated with using this method for extracting dense coverage of
a scene. A feature that is temporarily lost (e.g., if it is occluded or moves out
of the field of view) and then reappears, for example, is not associated with
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Fig. 5. Dense feature set and the grid used to enforce a relatively homogeneous feature
distribution. The red numbers identify each feature and its ID.

its previous track in our implementation. Instead, a new track is created. Our
current implementation does not address this limitation of KLT because it works
well as-is.

Fig. 6. Feature tracks (black) over two different sequences of 50 images. The red text
identifies each feature and its ID. The length of each black line indicates the length of
the feature track up that point.

6.2 Optimization

As the robot moves through the environment, it uses measurements of its motion
and the projections of landmarks to compute estimates of the robot’s poses
and of the landmarks’ positions, which are subsequently optimized using a non-
linear optimization framework. Each measurement defines a constraint on the
sequence of poses of the robot and the positions of landmarks. The values of
each pose and landmark position are optimized using the correlated data from
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the other measurements. As the robot explores, it acquires an increasing number
of different poses and landmark positions to estimate.

This paper applies the iSAM2 framework to perform optimization [14]. iSAM2
first captures the dependencies among the sequence of robot poses and the land-
mark positions using a factor graph. Pose and projection measurements are
represented as factors in the graph, which define the constraints on robot poses
and landmark positions to be optimized. The robot pose and the landmarks’
3D positions are represented as hidden variables to be estimated. In the iSAM2
framework, the factor graph is converted into a Bayes tree, first by applying vari-
able elimination to convert the factor graph into chordal Bayes net, and then by
extracting a directed tree from the cliques of the Bayes net.

Representing the optimization problem as a Bayes tree allows for incremental
updating without having to solve the entire optimization problem. The cliques
of the Bayes tree affected by a new factor are removed and deconstructed into a
factor graph. The variables of the new factor graph are reordered and converted
back into a bayes tree, which is placed at the root of the unaffected portion of
the deconstructed tree. For nonlinear factors, an additional relinearization step
is performed to keep a valid linearization point for each variable.

To supplement iSAM2, we also utilize smart factors to reduce the compu-
tation time required for optimization [3]. Because we are applying SLAM in a
long–term monitoring application, a very large number of factors accumulate to
represent all the robot poses and the projection measurements of landmarks, and
each directly increases the computation time required for optimization. It is pos-
sible, however, to reduce the number of factors used for optimization by taking
advantage of conditional independence relations of landmark observations. Each
landmark observation provides ‘support’ data, which is used for helping estimate
a robot pose and a landmark’s location. Fortunately, a set of support variables
for one landmark is conditionally independent of a set of support variables for a
different landmark given a smart factor.

A smart factor provides an abstraction of the data observed for a landmark.
This is enabled by the Schur complement, which reduces a system of linear
equations from one large problem into several smaller subproblems. As long as
each subproblem is well–conditioned, solving these subproblems is equivalent to
solving the large one. Because a smart factor abstracts all the projection data
for a landmark, it can also seamlessly check that its subset of the data is well-
conditioned. Degenerate cases like rotation–only movement, movement towards
a landmark, and a single observation of a landmark are eliminated before they
are used for optimization.

7 Conclusion and Future Work

Natural environments are challenging for the predominant SLAM data associa-
tion techniques. Towards our long term goal, this initial paper found that SIFT,
which is an appearance–based feature, provides spotty coverage of natural scenes
and does not match well across surveys. These results are consistent with similar
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work on mapping in large natural environments over large time scales. In light
of this, we have identified that KLT in addition to iSAM2 optimization may
provide a more precise estimate of the geometry of a lakeshore.

This is ongoing work in which we are continually gathering data, improving
our approach, and generating results. As we continue to get results, we are look-
ing toward data fusion (using geometry for data association) in the optimization
framework to help create a more comprehensive map of the lakeshore, as in [15].
We also plan to reduce the noise in robot pose estimates by applying the itera-
tive closest point algorithm to the laser scan of the shore for improved odometry.
Because this is still very preliminary work, we expect our methodology, analyses,
and conclusions to substantially grow over time.
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