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Abstract

A long term goal of Interactive Reinforcement Learning is to incorporate non-expert human feedback to solve complex
tasks. Some state-of-the-art methods have approached this problem by mapping human information to rewards and
values and iterating over them to compute better control policies. In this paper we argue for an alternate and more
effective characterization of human feedback: Policy Shaping. We introduce Advise, a Bayesian approach that attempts
to maximize the information gained from human feedback by utilizing it as direct policy labels.

We compare Advise to state-of-the-art approaches using a series of experiments. These experiments use two classic ar-
cade games, together with feedback from a simulated human teacher, which allows us to systematically test performance
under a variety of cases of infrequent and inconsistent feedback. We show that Advise has similar performance to the
state of the art, but is more robust to a noisy signal from the human and fairs well with an inaccurate estimate of its single
input parameter. With these advancements this paper may help to make learning from human feedback an increasingly
viable option for intelligent systems.
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1 Introduction
A long–term goal of machine learning is to create systems that can be interactively trained or guided by non-expert end-
users. This paper focuses specifically on integrating human feedback with Reinforcement Learning. One way to address
this problem is to treat human feedback as a shaping reward. Yet, recent papers have observed that a more effective use
of human feedback is as direct information about policies [1, 2]. Most techniques for learning from human feedback still,
however, convert feedback signals into a reward or a value. In this paper we introduce Policy Shaping, which formalizes
the meaning of human feedback as policy feedback, and demonstrates how to use it directly as policy advice. We also
introduce Advise, an algorithm for estimating a human’s Bayes optimal feedback policy and a technique for combining
this with the policy formed from Bayesian Q-Learning1.

We validate our approach using a series of experiments. These experiments use a simulated human teacher and allow us
to systematically test performance under a variety of cases of infrequent and inconsistent feedback. The results demon-
strate two advantages of Advise: 1) it is comparable to or outperforms state of the art techniques for integrating human
feedback with Reinforcement Learning; and 2) by formalizing human feedback, we avoid ad hoc parameter settings and
make Advise robust to infrequent and inconsistent feedback.

2 Reinforcement Learning
Reinforcement Learning (RL) defines a class of algorithms for solving problems modeled as a Markov Decision Process
(MDP). An MDP is specified by the tuple (S,A, T,R), which defines the set of possible world states, S, the set of actions
available to the agent in each state, A, the transition function T : S ×A→ Pr[S], a reward function R : S ×A→ R, and a
discount factor 0 ≤ γ ≤ 1. The goal of RL is to identify a policy, π : S → A, that maximizes reward.

This paper used an implementation of the Bayesian Q-learning (BQL) RL algorithm [4]. BQL maintains parameters that
specify a normal distribution with unknown mean and precision for each Q value, Q[s, a], which represents an estimate
of the long-term expected discounted reward for taking action a in state s. This representation approximates the agent’s
uncertainty in the optimality of each action, which makes the problem of optimizing the exploration/exploitation trade-
off straightforward. Because the Normal-Gamma (NG) distribution is the conjugate prior for the normal distribution, the
mean and the precision are estimated using a NG distribution with hyperparameters 〈µs,a

0
, λs,a, αs,a, βs,a〉. These values

are updated each time an agent performs an action a in state s, accumulates reward r, and transitions to a new state s′.
Details on how these parameters are updated can be found in [4].

The NG distribution for each Q value can be used to estimate the probability that each action a ∈ As in a state s is optimal,

which defines a policy, πR, used for action selection. The optimal action can be estimated by sampling each Q̂(s, a) and
taking the max. A large number of samples can be used to approximate the probability an action is optimal by simply
counting the number of times an action has the highest Q value [4].

3 Related Work
A key feature of RL is the use of a reward signal. The reward signal can be modified to suit the addition of a new in-
formation source (this is known as reward shaping [5]). This is the most common way human feedback has been applied
to RL. However, several difficulties arise when integrating human feedback signals that may be infrequent, or occa-
sionally inconsistent with the optimal policy–violating the necessary and sufficient condition that a shaping function be
potential-based [5]. Another difficulty is the ambiguity of translating a statement like “yes, that’s right” or “no, that’s
wrong” into a reward. Typically, past attempts have been a manual process, yielding ad hoc approximations for specific
domains. Researchers have also extended reward shaping to account for idiosyncrasies in human input. For example, a
drift parameter can account for the human tendency to give less feedback over time [6].

Advancements in recent work sidestep some of these issues by showing human feedback can instead be used as policy
feedback. For example, Thomaz and Breazeal [1] added an UNDO function to the negative feedback signal, which forced
an agent to backtrack to the previous state after its value update. Work by Knox and Stone [2, 7] has shown that a general
improvement to learning from human feedback is possible if it is used to directly modify the action selection mechanism
of the RL algorithm. Although both approaches use human feedback to modify an agent’s exploration policy, they still
treat human feedback as either a reward or a value (e.g., “right” becomes +1 and “wrong” −1). In our work, we assume
human feedback is making a direct statement about the policy itself, rather than influencing the policy through a reward.

4 Policy Shaping
We use feedback labels directly to infer what the human believes is the optimal policy of action in the previous state. We
assume a human providing feedback knows the right answer, but noise in the feedback channel introduces inconsisten-
cies between what the human intends to communicate and what the agent observes. Thus, feedback is consistent, C, with
the optimal policy with probability 0 < C < 1. We also assume that a human watching an agent learn may not provide
feedback after every single action, thus the likelihood, L, of receiving feedback has probability 0 < L < 1. In the event
feedback is received, it is meant as a comment on the optimality of the immediately preceeding action.

Although many different actions may be optimal in a given state, we will assume for this paper that the human knows
only one optimal action, which is the one they intend to communicate. In that case, an action, a, is optimal in state s

1A longer version of this paper appears in NIPS 2013 [3].
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if no other action is optimal. The probability s, a is optimal can be obtained by application of Bayes’ rule in conjuction
with the binomial distribution and enforcing independence conditions arising from our assumption that there is only

one optimal action. This gives: C∆s,a(1 − C)
∑

j 6=a
∆s,j , where ∆s,a is the difference between the number of “right” and

“wrong” labels. We take this equation to be the probability of performing s, a according to the feedback policy, πF (i.e.,
the value of πF (s, a)). This is the Bayes optimal feedback policy given the “right” and “wrong” labels seen, the value for
C, and that only one action is optimal per state.

Because the use of Advise assumes an underlying RL algorithm will also be used, the policies derived from multiple
information sources must be reconciled. Before an agent is completely confident in either policy, it has to determine
what action to perform using the policy information each provides. We combine the policies from multiple information
sources by multiplying them together: π ∝ πR × πF . Multiplying distributions together is the Bayes optimal method for
combining probabilities from (conditionally) independent sources [8]. Note that BQL can only approximately estimate
the uncertainty that each action is optimal from MDP reward. Rather than use a different combination method to com-
pensate for the fact that BQL converges too quickly, we introduced the exploration tuning parameter, θ, from [9], that can
be manually tuned until BQL performs close to optimal.

5 Experimental Setup
We evaluate our approach using two game domains, Pac-Man and Frogger, with a simulated oracle. Pac-Man consists of
a 5x5 grid world with two food pellets, one ghost, walls, and the Pac-Man avatar. The goal is to eat all the pellets while
avoiding the ghost. Points are awarded for each pellet (+10) and winning the game (+500). Points are taken away as time
passes (-1) and for losing the game (-500). The action set consisted of the four primary cartesian directions. The state
representation included Pac-Man’s position, the position and orientation of the ghost, and the presence of pellets.

Frogger consists of a 4x4 grid world with two moving cars, two water hazards, and the Frogger avatar. The goal is to
cross the road without being run over or jumping into a water hazard. Each car drives one space per time step. The car
placement and direction of motion is randomly determined at the start and does not change. As a car disappears off the
end of the map it reemerges at the beginning of the road and continues to move in the same direction. The cars moved
only in one direction, and they started out in random positions on the road. Each lane was limited to one car. Points are
won for arriving at a safe spot on the far side (+500). Points are lost as time passes (-1), for being run over (-500), and for
hopping into a water hazard (-500). The action set consisted of the four primary cartesian directions and a stay-in-place
action. The state representation included frogger’s position and the position of the two cars.

A simulated oracle was used in the place of human feedback, because this allows us to systematically vary the parameters
of feedback likelihood, L, and consistency, C and test different learning settings in which human feedback is less than
ideal. The oracle was created manually by a human before the experiments by encoding the optimal action in each state.
For states with multiple optimal actions, a small negative reward (-10) was added to the MDP reward of the extra optimal
actions to preserve the assumption that only one action be optimal in each state.

6 Experiments
6.1 A Comparison to the State of the Art
In this evaluation we compare Policy Shaping with Advise to the more traditional Reward Shaping, as well as recent
Interactive RL techniques. Knox and Stone [2, 7] tried eight different strategies for combining feedback with an environ-
mental reward signal and they found that two strategies, Action Biasing and Control Sharing, consistently produced the
best results. Both of these methods convert human feedback to a value but recognize that the information contained in
that value is policy information.

Action Biasing, Control Sharing, and Reward Shaping can all be defined using the same set of parameters and variables.
Positive and negative feedback is declared a reward rh, and −rh, respectively. A table of values, H [s, a] stores the
feedback signal for s, a. The value B[s, a] controls the influence of feedback on learning, and is incremented by a constant
b when feedback is received for s, a, and is decayed by a constant d at all other time steps.

Action Biasing modifies the action selection of BQL to be argmaxa Q̂(s, a) + B[s, a] ∗ H [s, a]. Control Sharing defines a
transition between πR and a feedback policy as the probability P (a = argmaxa H [s, a]) = min(B[s, a], 1.0)2. Reward
Shaping modifies the MDP reward function to be R′(s, a)← R(s, a) + B[s, a] ∗H [s, a].

We compared the methods using four different combinations of feedback likelihood, L, and consistency, C, in Pac-Man
and Frogger, for a total of eight experiments3 4. Table 1 summarizes the quantitative results. In the ideal case of frequent
and correct feedback (L = 1.0; C = 1.0), we see in Table 1 that Advise does much better than the other methods early

2Control Sharing interprets feedback as a reward, but it does not use that information, so is unaffected if its magnitude changes.
3We manually tuned all the parameters before the experiments to maximize MDP reward. BQL:〈µs,a

0
= 0, λs,a

= 0.01, αs,a
=

1000, βs,a
= 0.0000〉, θ = 0.0001 for Frogger, and θ = 0.5 for Pac-Man. Discount factor: γ = 0.99. Action Biasing, Control Sharing, and

Reward Shaping: b = 1, d = 0.001, for Action Biasing rh = 100, and for Reward Shaping rh = 100 in Pac-Man and rh = 1 in Frogger.
4We used the conversion rh = 1, 10, 100, or 1000 that maximized MDP reward in the ideal case to also evaluate the three cases

of non-ideal feedback. We had to use rh = 1.0 for Reward Shaping in frogger because the agent can end up in infinite loops when
feedback is less than ideal. This was not a problem in Pac-Man because the ghost can force Pac-Man out of oscillatory behavior.
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Ideal Case Reduced Consistency Reduced Frequency Moderate Case
(L = 1.0, C = 1.0) (L = 0.1, C = 1.0) (L = 1.0, C = 0.55) (L = 0.5, C = 0.8)

Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger

BQL + Action Biasing 0.58 ± 0.02 0.16 ± 0.05 -0.33 ± 0.17 0.05 ± 0.06 0.16 ± 0.04 0.04 ± 0.06 0.25 ± 0.04 0.09 ± 0.06
BQL + Control Sharing 0.34 ± 0.03 0.07 ± 0.06 -2.87 ± 0.12 -0.32 ± 0.13 0.01 ± 0.12 0.02 ± 0.07 -0.18 ± 0.19 0.01 ± 0.07
BQL + Reward Shaping 0.54 ± 0.02 0.11 ± 0.07 -0.47 ± 0.30 0 ± 0.08 0.14 ± 0.04 0.03 ± 0.07 0.17 ± 0.12 0.05 ± 0.07

BQL + Advise 0.77 ± 0.02 0.45 ± 0.04 -0.01 ± 0.11 0.02 ± 0.07 0.21 ± 0.05 0.16 ± 0.06 0.13 ± 0.08 0.22 ± 0.06

Table 1: Comparing the learning rates of BQL + Advise to BQL + Action Biasing, BQL + Control Sharing, and
BQL + Reward Shaping. Each entry represents the average and standard deviation of the cumulative reward in 300
episodes, expressed as the percent of the maximum possible cumulative reward for the domain with respect to the BQL
baseline. Negative values indicate performance worse than BQL. Bold values indicate the best performance for that case.

in the learning process. A human reward that does not match both the feedback consistency and the domain may fail to
eliminate unnecessary exploration and produce learning rates similar to or worse than RL on its own. Advise avoided
these issues by not converting feedback into a reward.

The remaining results in Table 1 show performance for each of the non-ideal conditions that we tested: reduced feedback
consistency (L = 1.0; C = 0.55), reduced frequency (L = 0.1; C = 1.0), and a case that we call moderate (L = 0.5;
C = 0.8). Action Biasing and Reward Shaping performed comparably to Advise in two cases. Action Biasing does
better than Advise in one case in part because the feedback likelihood is high enough to counter Action Biasing’s overly
influential feedback policy. This gives the agent an extra push toward the goal without becoming detrimental to learning
(e.g., causing loops). In its current form, Advise makes no assumptions about the likelihood the human will provide
feedback.

The results in Table 1 comprehensively show that Advise always performed at or above the BQL baseline, which indi-
cates robustness to less than ideal feedback. In contrast, Action Biasing, Control Sharing, and Reward Shaping blocked
learning progress in several cases with reduced consistency (column 3 has the most extreme example). Control Sharing
performed worse than BQL in three cases. Action Biasing and Reward Shaping performed worse than BQL in one case.

Having a prior estimate of the feedback consistency, C, allows Advise to balance what it learns from the human appro-
priately with its own learned policy. We could have provided the known value of C to the other methods, but doing so
would not have helped set rh, b, or d. These parameters had to be tuned since they only slightly correspond to C. We
manually selected their values with ideal feedback, and then used those same settings for the other cases. However,
different values for rh, b, and d may produce better results in the cases with reduced L or C. We tested this next.

6.2 How The Reward Parameter Affects Action Biasing
Here, we test how Action Biasing performed with a range of values for rh for the case of moderate feedback (L = 0.5 and
C = 0.8), and for the case of reduced consistency (L = 1.0 and C = 0.55). Control Sharing was left out of this evaluation
because changing rh did not affect its learning rate. Reward Shaping was left out of this evaluation due to the problems
mentioned in Section 6.1. The conversion from feedback into reward was set to either rh = 0, 500, or 1000.

The results in Fig. 1 show that a large value for rh is appropriate for more consistent feedback; a small value for rh is best
for reduced consistency. This is clear in Pac-Man when a reward of rh = 1000 led to better-than-baseline learning perfor-
mance in the moderate feedback case, but decreased learning rates dramatically below BQL in the reduced consistency
case. In that case, the use of rh = 0 produced the best results. Therefore, rh depends on feedback consistency.

This experiment also shows that the best value for rh is somewhat robust to a slightly reduced consistency. A value of
either r = 500 or 1000, in addition to r = 100 (see Table 1), can produce good results with moderate feedback in both Pac-
Man and Frogger. The use of a human influence parameter B[s, a] to modulate the value for rh is presumably meant to
help make Action Biasing more robust to reduced consistency. The value for B[s, a] is, however, increased by b whenever
feedback is received, and reduced by d over time; b and d are more a function of the domain than the information in
accumulated feedback. Our next experiment demonstrates why this is bad for IRL.

6.3 How Domain Size Affects Learning
Action Biasing, Control Sharing, and Reward Shaping use a ‘human influence’ parameter, B[s, a], that is a function of the
domain size more than the amount of information in accumulated feedback. To show this we froze the parameters and
evaluated the algorithms in a larger domain. Frogger was increased to a 6× 6 grid with four cars. An oracle was created
automatically by running BQL to 50,000 episodes 500 times, and then for each state choosing the action with the highest
value. The oracle provided moderate feedback (L = 0.5; C = 0.8) for the 33360 different states identified in this process.

Our results (omitted due to space constraints) show that, whereas Advise performed roughly the same as in the smaller
Frogger domain (see the last column in Table. 1), Action Biasing, Control Sharing, and Reward Shaping all had a negligi-
ble effect on learning, performing roughly the same as the BQL baseline. In order for those methods to perform as well
as they did with the smaller version of Frogger, the value for B[s, a] needs to be set higher and decayed more slowly by
manually finding new values for b and d. Thus, like rh, the optimal values to b and d are dependent on both the domain

and the quality of feedback. In contrast, the estimated feedback consistency, Ĉ, used by Advise only depends on the true
feedback consistency, C. For comparison, we next show how sensitive Advise is to a suboptimal estimate of C.
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Figure 1: How different feedback reward values affected BQL + Action Biasing. Each line shows the average and standard
error of 500 learning curves over a duration of 300 episodes. See the text for more details.

6.4 Using an Inaccurate Estimate of Feedback Consistency
Interactions with a real human will mean that in most cases Advise will not have an exact estimate, Ĉ, of the true feedback
consistency, C. It is presumably possible to identify a value for Ĉ that is close to the true value. Any deviation from the
true value, however, may be detrimental to learning. This experiment shows how an inaccurate estimate of C affected
the learning rate of Advise. Feedback was generated with likelihood L = 0.5 and a true consistency of C = 0.8. The

estimated consistency was either Ĉ = 1.0, 0.8, or 0.55.

Our results (omitted due to space constraints) show that in both Pac-Man and Frogger using Ĉ = 0.55 reduced the
effectiveness of Advise. The learning curves are similar to the baseline learning curves because using an estimate of C

near 0.5 is equivalent to not using feedback at all. In general, values for Ĉ below C decreased the possible gains from
feedback. In contrast, using an overestimate of C slightly boosted learning rates for these particular domains and case of
feedback quality. In general, however, overestimating C can lead to a suboptimal policy especially if feedback is provided

very infrequently. Therefore, it is desirable to use Ĉ as close to its true value, C, as possible.

7 Conclusion and Future Work
Overall, our experiments indicate that it is useful to interpret feedback is as a direct comment on the optimality of an
action, without converting it into a reward or a value. Advise performed comparably to or better than tuned versions
of Action Biasing, Control Sharing, and Reward Shaping. These methods are outperformed because they first convert
feedback into a reward, which reduces the effectiveness of the information. Their performance also suffers because their
use of ‘human influence’ parameters is disconnected from the amount of information in the accumulated feedback. In
contrast, Advise has only one input parameter, which is independent of the domain, and can be used to calculate the
exact amount of information in the accumulated feedback in each state. Advise combines the feedback policy with the
RL policy using the right amount of influence. It also always utilizes information from both sources.

In conclusion, this paper defined the Policy Shaping paradigm for integrating feedback with Reinforcement Learning.
We introduced Advise, which tries to maximize the utility of feedback using a bayesian approach to learning. Advise
produced results on par with or better than the current state-of-the-art IRL techniques, showed where those approaches
fail while Advise is unaffected, and it demonstrated robustness to infrequent and inconsistent feedback. We plan to

extend our work by computing Ĉ online as a human interacts with an agent, and addressing other aspects of human
feedback like errors in credit assignment.
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