
A Appendix

Here we derive analytical solutions to the optimal feedbackpolicy. The form of the optimal feedback
policy depends on how many optimal actions a human intends tocommunicate per state. There are
up to 2n different models of the optimal feedback policy if any number of the n actions can be
optimal. Assuming a human will communicate fewer thann optimal actions per state reduces the
number of models we have to consider and thus allows us to extract more information from each
instance of feedback. Here we consider the general case and the case with one optimal action per
state.

A.1 General Case

The probability an action,a, in states is optimal can be computed independently of the feedback
to the other actions when no assumptions are made about the number of optimal actions a human
intends to communicate. For brevity, letπ1 be a model of the optimal policy,π∗, in whichπ∗(s, a) =
1. Letπ2 be a model of the optimal policy in whichπ∗(s, a) = 0. The binomial distribution for the
data givenπ1 is: p(ds,a|π1) =

(

us,a+vs,a
us,a

)

Cus,a(1− C)vs,a , whereus,a andvs,a refer to the number
of “right” and “wrong” labels respectively andds,a = us,a, vs,a is the feedback received fors, a. The
binomial distribution for the data given the alternative policy is: p(ds,a|π2) =

(

us,a+vs,a
vs,a

)

Cvs,a(1−

C)us,a . From Bayes’ rule, the probabilitys, a is optimal is:

p(π1|ds,a) =
p(ds,a|π

1)p(π1)

p(ds,a)

=
p(ds,a|π

1)p(π1)

p(ds,a|π1)p(π1) + p(ds,a|π2)p(π2)
.

The priors can be eliminated if we assume the priors have uniform probability:

p(π1|ds,a) =
p(ds,a|π

1)

p(ds,a|π1) + p(ds,a|π2)

=

(

us,a + vs,a

us,a

)

Cus,a(1− C)vs,a

(

us,a + vs,a

us,a

)

Cus,a(1− C)vs,a +

(

us,a + vs,a

vs,a

)

Cvs,a(1− C)us,a

.

The binomial coefficients cancel (due the symmetry rule for binomial coefficients). Also, for brevity
let ∆s,a = us,a − vs,a:

p(π1|ds,a) =
Cus,a(1 − C)vs,a

Cus,a(1− C)vs,a + Cvs,a(1− C)us,a

=
Cus,a−vs,a

Cus,a−vs,a + (1 − C)us,a−vs,a

=
C∆s,a

C∆s,a + (1 − C)∆s,a
. (1)

A similar derivation for the alternative policy gives:

p(π2|ds,a) =
(1− C)∆s,a

C∆s,a + (1 − C)∆s,a
. (2)

A.2 One Optimal Action Case

Deriving an analytical solution for the case with one optimal action per state first requires us to
consider how to compute the probability of a model that defines a labeling for all the actions in a
state, rather than just one. Withn actions in a state there are2n different models to consider. For
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brevity letπk = πk
1 , . . . , π

k
n be one of these models, whereπk

i specifies whetherπ∗(s, i) = 1 or
π∗(s, i) = 0. LetDs = ds,1, . . . , ds,n be the accumulated human feedback corresponding to then
actions in states. From Bayes rule we have:

p(πk|Ds) =
p(Ds|π

k)p(πk)

p(Ds)

=
p(Ds|π

k)p(πk)

p(Ds|π1)p(π1) + · · ·+ p(Ds|π2n)p(π2n)
.

A uniform prior over all policies allows us to eliminate the priors:

p(πk|Ds) =
p(Ds|π

k)

p(Ds|π1) + · · ·+ p(Ds|π2n)

∝ p(Ds|π
k)

∝ p(ds,1, · · · , ds,n|π
k
1 , · · · , π

k
n).

Repeated applications of the chain rule, followed by variable elimination using conditional indepen-
dence (see Appendix A.3), gives:

p(πk|Ds) ∝ p(ds,1|π
k
1 )× · · · × p(ds,n|π

k
n)

∝

n
∏

i=1

p(ds,i|π
k
i ). (3)

Thus, the posterior can be computed as the product ofp(ds,i|π
k
i ). Let p̄(ds,i|πk

i ) = Cus,i(1− C)vs,i

or p̄(ds,i|hk
i ) = Cvs,i(1−C)us,i as needed. Also, letNi =

(

us,i+vs,i
us,i

)

=
(

us,i+vs,i
vs,i

)

. We next isolate

the binomial coefficients from our computation ofp(πk|Ds), which, in the following step, allows us
to cancel them out of the equation:

p(πk|Ds) ∝

n
∏

i=1

p(ds,i|π
k
i )

∝

n
∏

i=1

(

us,i + vs,i

us,i

)

Cus,i(1− C)vs,i

∝
n
∏

i=1

Ni × Cus,i(1− C)vs,i

∝

n
∏

i=1

Ni

n
∏

i=1

Cus,i(1− C)vs,i

∝
n
∏

i=1

Ni

n
∏

i=1

p̄(ds,i|π
k
i ).

We factor out the binomial coefficients because they appear in every term of the numerator and the
denominator:

p(πk|Ds) =

∏n

i=1
Ni

∏n

i=1
p̄(ds,i|π

k
i )

∏n

i=1
Ni

∏n

i=1
p̄(ds,i|π1

i ) + · · ·+
∏n

i=1
Ni

∏n

i=1
p̄(ds,i|π2n

i )

=

∏n

i=1
Ni

∏n

i=1
Ni

×

∏n

i=1
p̄(ds,i|π

k
i )

∏n

i=1
p̄(ds,i|π1

i ) + · · ·+
∏n

i=1
p̄(ds,i|π2n

i )

=

∏n

i=1
p̄(ds,i|π

k
i )

∏n

i=1
p̄(ds,i|π1

i ) + · · ·+
∏n

i=1
p̄(ds,i|π2n

i )
.
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Assuming policyπk is the case for which all actions are optimal,p(πk|Ds) expands as:

(Cus,1(1− C)vs,1)(Cus,2(1− C)vs,2) · · · (Cus,n(1 − C)vs,n)

((Cvs,1(1− C)us,1) · · · (Cvs,n(1− C)us,n)) + · · ·+ ((Cus,1(1− C)vs,1) · · · (Cus,n(1 − C)vs,n))
.

The denominator above is a summation of2n different sets of products. This is equivalent to the
multiplication of then different sets of the two models case (see Appendix A.1), as shown:

p(πk|Ds) =

(

Cus,1(1 − C)vs,1

Cus,1(1− C)vs,1 + Cvs,1(1− C)us,1

)

· · ·

(

Cus,n(1− C)vs,n

Cus,n(1− C)vs,n + Cvs,n(1− C)us,n

)

=

(

C∆s,1

C∆s,1 + (1 − C)∆s,1

)

· · ·

(

C∆s,n

C∆s,n + (1 − C)∆s,n

)

=
n
∏

i=1

p(πk
i |ds,i). (4)

Equation (4) represents the likelihood of modelπk, which is useful if we restrict the number of
possible optimal actions per state. We could use Eqn. 4 without restricting the number of optimal
actions per state, but finding the model with maximum likelihood would involve comparing the
likelihoods of2n different models, which is intractable. For our purposes, we limit the number of
possible optimal actions per state to one. This decreases the number of models we need to consider
to n. Let πk correspond to the model that actionk is optimal and all others are suboptimal. We
have:

p(πk|Ds) ∝ p(πk
k |ds,k)

n
∏

i6=k

p(πk
i |ds,i)

∝ C∆k

n
∏

i6=k

(1− C)∆s,i

∝ C∆k(1− C)
∑

n
i6=k

∆s,i . (5)

Equation (5) is what we use withAdvise.

A.3 Simplification of the probability p(Ds|π
k)

We can make the computation ofp(Ds|π
k) tractable through repeated application of the chain rule

and conditional independence relations. First we expand the data variables using the chain rule:

p(Ds|π
k) = p(ds,1, · · · , ds,n|π

k)

= p(ds,1|π
k)× p(ds,2, · · · , ds,n|ds,1, π

k)

= p(ds,1|π
k)× p(ds,2|ds,1, π

k)× p(ds,3, · · · , ds,n|ds,1, ds,2, π
k)

= p(ds,1|π
k)× p(ds,2|ds,1, π

k)× · · · × p(ds,n|ds,1, · · · , ds,n−1, π
k).

We next use conditional independence to eliminate the dependence among the data variables. Be-
cause we take the policy to be true, and because action selection is the same for all the models, the
data received for one action does not help to explain the datareceived for the other actions. This
allows us to eliminate the dependence among the data:

p(Ds|π
k) = p(ds,1|π

k)× p(ds,2|π
k)× p(ds,3|π

k)× · · · × p(ds,n|π
k).

We can use similar reasoning to eliminate the dependence on multiple model variables:

p(Ds|π
k) = p(ds,1|π

k)× p(ds,2|π
k)× · · · × p(ds,n|π

k)

= p(ds,1|π
k
1 , · · · , π

k
n)× p(ds,2|π

k
1 , · · · , π

k
n)× · · · × p(ds,n|π

k
1 , · · · , π

k
n)

= p(ds,1|π
k
1 )× p(ds,2|π

k
2 )× · · · × p(ds,n|π

k
n)

=

n
∏

i=1

p(ds,i|π
k
i ).
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