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Abstract—This paper introduces a framework that allows a
robot to form a single behavior–grounded object categorization
after it uses multiple exploratory behaviors to interact with ob-
jects and multiple sensory modalities to detect the outcomes that
each behavior produces. Our robot observed acoustic and visual
outcomes from 6 different exploratory behaviors performed on 20
objects (containers and non-containers). Its task was to learn 12
different object categorizations (one for each behavior–modality
combination), and then to unify these categorizations into a
single one. In the end, the object categorization acquired by the
robot matched closely the object labels provided by a human.
In addition, the robot acquired a visual model of containers and
non-containers based on its unified categorization, which it used
to label correctly 29 out of 30 novel objects.

Index Terms—Artificial intelligence, intelligent robots, learning
systems, robots, object categorization, developmental robotics

I. INTRODUCTION

OBJECT categorization is a fundamental skill that
emerges early in the course of human infant devel-

opment [3]. From the moment infants begin to manipulate
objects, they can identify differences between them in terms
of the sensations that the objects produce [4]. As infants
gain more control over their bodies, they begin to grasp,
mouth, scratch, and bang objects in order to learn about
them [5]. These exploratory behaviors and the sensations that
they produce lay the foundations for forming many different
object categories [6].

Each object category that infants learn in this way is asso-
ciated with a set of functional and perceptual properties [7].
For example, containers have the functional property that a
block placed inside of a container will start to move when
the container is moved. Containers also have the perceptual
property that they look concave. Different object categories are
represented by different collections of properties. Over time,
infants’ category representations become more diverse [8].

In contrast, the majority of object categorization systems in
artificial intelligence and robotics are almost entirely image–
based. Given a clear view of the object these disembodied
classifiers can accurately categorize objects using visual ap-
pearance alone [9]. Because they do not use the robot’s body,
however, the functional properties of objects cannot be learned
by these systems [10]. Additional information sources are
required for learning object categories that capture something
about the functional properties of objects.

The problem of learning object categories becomes more
complex when multiple information sources are available. For
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Fig. 1. The upper-torso humanoid robot, shown here shaking one of the
objects used in the experiments. The small plastic block inside the object
produces auditory and visual events, which the robot can detect and use to
categorize the object as a container.

example, consider a robot that has microphones and cameras,
which record information streams while the robot interacts
with objects. Objects that were traditionally categorized only
by their visual appearance can now also be categorized by
the sounds that they produce or by their movements as the
robot performs different behaviors on them. To make things
even more complicated, each behavior–modality combination
results in a different object categorization. It is not straight-
forward to figure out which of these categorizations are more
meaningful or if it is possible to combine them into a single
categorization.

Research in developmental robotics has shown that robots
can form meaningful behavior–grounded object categories
using a single exploratory behavior and a single sensory
modality [1][2][11]. Because these categories are grounded
in the robot’s own behavior, the robot can test, verify, and
correct that knowledge autonomously without human interven-
tion [12][13]. More work is needed, however, to show how a
robot with an extensive behavioral and perceptual repertoire
can reconcile the different object categorizations that result
from each behavior–modality combination.

This paper introduces a computational framework that
allows a robot to form a single behavior–grounded object
categorization after it uses multiple exploratory behaviors to
interact with objects and multiple sensory modalities to detect
the outcomes that each behavior produces. Our robot (see
Fig. 1) observed acoustic and visual outcomes from 6 different
exploratory behaviors performed on 20 objects (containers
and non-containers). Its task was to learn 12 different object
categorizations (one for each behavior–modality combination),
and then to unify these categorizations into a single one. In the
end, the robot divided the objects into object categories that a
human would call containers and non-containers. Furthermore,
the robot was able to learn a visual model of the two categories
and use this model to categorize novel objects.
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Fig. 2. The framework used by the robot to learn object categories.
First, the robot interacts with the objects and observes the outcomes that
are produced. The extracted auditory and visual features are used to learn
perceptual outcome classes. These are used to form object categories, one
for each behavior–modality combination. The categories are unified using
consensus clustering into a single category. Finally, a visual model is trained
that can recognize the categories of novel objects. The dotted line is to show
that the visual model could be used to guide and refine future interactions
with objects.

Fig. 2 shows a high-level overview of the framework
described in this paper. First, the robot interacts with the
objects and observes the sounds and the movement patterns
that the objects produce. Perceptual features are learned from
the raw sensory data, and feature extraction is performed.
Next, the robot captures the different functional properties of
the objects by clustering the extracted features into outcome
classes. Object categories are learned by clustering the objects
based on how often the different functional properties occur
with each object. The object categorization step also includes
a unification process, which unifies the object categories
produced from multiple behaviors and sensory modalities. A
visual model that can predict the categories of novel objects
is learned in the last step. The visual classifier is trained using
the object category labels produced by the unified clustering
procedure. The visual classifier could also help guide and
refine the robot’s future interactions with objects.

II. RELATED WORK
A. Developmental Psychology

The object categorization framework described in this paper
was motivated by work in developmental psychology, which
attempts to explain how infants perform categorization tasks.
Psychologists have found that if infants are presented with a
set of objects, in which several of the objects have a common
functional property, then the infants will categorize the objects
based on this property [14]. In this context, infants categorize
the objects by the sounds that they make or by their visual
movement patterns, and not by static perceptual properties like
object shape or color [14][15].

Infants may categorize objects in this way because they
learn from the events that capture their attention [16]. For
example, an object that makes noises will automatically draw
their attention [17]. Events that violate their expectations
(e.g., an unexpected movement pattern) also capture their
attention [18]. Spelke argues that from birth infants can predict
the movement patterns of objects and form expectations about
their trajectories [19]. Infants know that there is no action

without contact, that two objects cannot merge into one, that
one object cannot split into multiple objects, etc. [19].

Typically, the expectations of infants seem to agree with
the laws of real-world physics, but there are some exceptions.
Needham et al. [20] found that when 7.5-month-old infants
see a key-ring with keys, they perceive two distinct objects
and thus predict that the key-ring and the keys will move
separatelywhen the key-ring is moved. More experienced 8.5-
month-old infants, however, expect that the key-ring and the
keys will move together because they have seen and heard
the two ‘distinct’ objects move together many times [20]. A
similar shift in expectations has been observed while studying
infants’ knowledge of containers: infants come to expect that
an object inside a container will move with the container when
the container is moved [21][22][23].

Together, these findings suggest that there is a gradual
process of object category learning, in which object category
representations are progressively grounded in different actions
and their outcomes. Indeed, it is believed that infants first
represent “what actions can be done on objects of certain
kinds” [24], before they incorporate the object’s visual shape
into their representations. This may imply that behaviors and
their outcomes form the bases of infants’ initial concepts.
Baillargeon has shown that only after infants have formed
an “initial concept” do they begin to incorporate variables
into their representations that serve to refine their predic-
tions [25]. Passively observable object properties such as shape
are learned gradually over time if they consistently appear with
members of a category [22][26][27][28][29][30].

The fact that infants gradually improve their object category
representations as they gain more experience supports Cohen’s
hypothesis that there is an information processing mechanism
underlying object categorization [31]. One information pro-
cessing mechanism known to be used by humans of all ages is
the detection of the frequency of occurrence of a stimulus [32].
Humans implicitly extract the frequency information for a
variety of naturally occurring phenomena [32]. It is reasonable
to assume that infants may also use frequency information to
separate objects into categories.

Neuroscientists have suggested that multimodal represen-
tations of categories are formed in high–level convergence
zones in the hierarchical organization of the brain [8][33][34].
At these convergence zones, fragments of data from multiple
modalities are bound together if they occur coincidentally or
sequentially in space and time [33][34]. The representation of
an abstract object category involves a multiregional activation
of the brain, which reaches many different sensory areas
[33][34]. The resulting multimodal representation encodes
how objects in the category sound, move, look, feel, etc.

This paper introduces an object categorization framework
for robots that was inspired by the studies with infants
mentioned above. We believe that object category learning by
robots may be more generalizable (i.e., less tailored toward
a specific categorization problem) if it is modeled after the
object categorization abilities of infants. One of the first
abstract categories that infants learn is that of containers [35],
which is why we evaluated the framework on a container/non-
container categorization task.



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT

B. Object Categorization in Robotics

Relatively few papers have addressed the task of interactive
object categorization by a robot. Pfeifer and Scheier [36] were
among the first to tackle this problem. They programmed a
mobile robot with an ability to learn how to move differently–
sized objects for the purpose of cleaning its environment.
The robot learned that it could carry small objects and push
medium–sized objects. It ignored the large objects that it could
not push or carry, which allowed it to learn faster. Thus, the
robot implicitly categorized objects by their movability.

Metta and Fitzpatrick [11] showed how a humanoid robot
could simplify the problem of object segmentation by pushing
objects. When the robot made contact with an object, the
object was easily segmented from the background, which
allowed the robot to construct a model for it. The robot
used this procedure to interact with 4 different objects and
to implicitly categorize them by their rollability.

Ugur et al. [37] showed how a mobile robot could learn
about the traversability of objects in a simulated environment.
The robot attempted to traverse an area that had randomly
dispersed spheres, cylinders, and cubes. It learned which
objects could be pushed aside (spheres and cylinders in lying
orientations), and which could not (cubes and cylinders in
upright orientations).

Learning the similarity between objects is a problem closely
related to object categorization. Sinapov and Stoytchev [38]
showed how a humanoid robot could describe different tools
using a hierarchical taxonomy of outcomes. The robot con-
structed outcome taxonomies for 6 different stick-shaped tools
based on its interactions with them and used the outcome
taxonomies to measure the similarity between the tools. Mon-
tesano et al. [39] introduced a system that a robot could
use to learn relationships between its actions, the perceptual
properties of objects, and the observed effects. The system
was evaluated with data from interactions with differently–
sized spheres and cubes.

Sinapov et al. [40] demonstrated that acoustic object recog-
nition is feasible even with a large set of objects and when
multiple behaviors are performed. The robot listened to the
acoustic outcomes produced by 36 objects as it grasped,
shook, dropped, pushed, and tapped them. Individually, some
behaviors were more useful for acoustic object recognition
than others. As the robot performed more behaviors on an
object, however, the recognition accuracy approached 99%.
In a follow up study [41], the robot categorized the material
type of the objects and whether or not they had contents inside
them. The object categorizations were grounded in the acoustic
object recognition models used by the robot.

Nakamura et al. [42] introduced an unsupervised approach
to multimodal object categorization, in which objects were
categorized by the similarity of their perceptual features. A
robot interacted with 40 different objects, which included 8
different categories of children’s toys. The robot squeezed
objects to observe hardness, viewed objects from different an-
gles to obtain visual appearance features, and shook objects to
capture acoustic properties. Results showed that when all three
modalities were used the robot’s object categorization closely

resembled human–provided ones. Further results showed that
visual appearance information could be used to infer the
hardness of a novel object, but not its acoustic properties [42].

Griffith et al. [1] introduced a framework for interactive
object categorization by a robot. A humanoid robot dropped
a block above an object and observed co-movement patterns
between the two as it pushed the object. The robot categorized
5 containers and 5 non-containers using the frequency with
which different co-movement patterns occurred with each ob-
ject. The behavior-grounded categorization allowed the robot
to learn a perceptual model of containers, which it used to
infer the functional properties of novel objects.

In a follow-up study, Sahai et al. [43] used this object cate-
gorization framework for a robotic writing task. A humanoid
robot scribbled with 12 different objects on 12 different
surfaces. The robot categorized objects by the frequency with
which each object left a mark on a surface. Also, it categorized
surfaces by the frequency with which each surface preserved
the traces left by each object. The categorizations separated
the objects and the surfaces that provided the most utility in
robotic writing tasks from those that provided the least.

This paper employs some of the same methodology that
Sinapov et al. [40] have used for object recognition tasks. We
were first motivated to conduct acoustic object categorization
experiments in [2]. In that study, a robot categorized containers
and non-containers based on the sounds they produced while
interacting with them. The robot observed acoustic outcomes
as it dropped a block above an object, grasped the object,
moved the object, shook the object, flipped the object, and
dropped the object. The results showed that some of the robot’s
behaviors produced sounds that were useful for categorizing
the objects; other behaviors were not as useful.

This paper extends our previous work [1][2][43] by using
multiple sensory modalities (audio and vision) to learn object
categories. It uses the dataset from [2], which also contained
visual data that is analyzed here for the first time. The new
framework described here also unifies the robot’s categoriza-
tions from multiple behaviors and modalities into a single one.
The robot also formed a visual model of containers and non-
containers based on its unified object categorization, which it
used to infer the category of novel objects. It should be noted
that in this paper, the identity of each object is assumed to be
known. In other words, the acoustic data and the visual data
corresponding to actions on a specific object is labeled with
the object’s ID. What is unlabeled is the category (container
versus non-container).

III. EXPERIMENTAL SETUP
A. Robot

All experiments were performed using the upper-torso hu-
manoid robot shown in Fig. 1. The robot’s arms are two 7-DOF
Whole Arm Manipulators (WAMs) manufactured by Barrett
Technology. They are mounted in a configuration similar to
that of human arms. Two Barrett Hands are used as end
effectors. The WAMs are controlled in real time at 500 Hz
over a CAN bus interface.
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a) b) c)

Fig. 3. The robot’s vision system: a) the 3D camera (a ZCam [44]); b) a
color image of the red non-container captured by the camera when mounted
on the robot; c) the depth image corresponding to b).

The robot’s auditory system consists of two Audio-Technica
U853AW Hanging Microphones, which are mounted in the
robot’s head. The microphones’ output is fed through two ART
Tube MP Studio Microphone pre-amplifiers. The signal from
the amplifiers is fed to a Lexicon Alpha bus-powered interface,
which transmits the signal to a Linux PC over USB. For the
experiments in this paper, sound was captured from a single
microphone using the Java Sound API at 44.1 KHz over a
16-bit mono channel.

The robot’s visual system consists of a single 3D camera—
a ZCam manufactured by 3DV Systems [44]. The ZCam
captures 320x240 depth images and 640x480 color images.
The resolution of the depth images is accurate to ±1-2 cm. The
depth images are calculated by first pulsing infrared light in
two frequencies and then detecting and processing the reflected
pulses of light. Figure 3 shows a close up of the ZCam and
its field of view when mounted on the robot.

B. Objects

The robot interacted with a small plastic block and 10
different objects (shown in Fig. 4). Each of the 10 objects was
a container in one orientation and a non-container when flipped
over. Flipping the containers was an easy way for the robot
to learn about non-containers while preserving the dimensions
of the objects in the two categories.

The objects were selected to have a variety of shapes, sizes,
and materials. Objects were tall, short, rectangular and round.
They were made of plastic, metal, wicker, and foam. A few
objects that were initially selected could not be used because
they were too large to be grasped. Also, the aluminum fingers
of the Barrett Hand did not create a firm grip with some
objects, which was important for a large-scale experimental
study like this one. Therefore, rubber fingers were stretched
over each of the robot’s three fingers to achieve more reliable
grasps.

C. Robot Behaviors

The robot performed six behaviors during each trial: 1) drop
block, 2) graspobject, 3) moveobject, 4) shakeobject, 5) flip
object, and 6) drop object. Before the start of each trial a
person placed the block and the object at specific locations.
The robot grasped the block and positioned its hand in the area
above the object before executing the six behaviors. Figure 5
shows the sequence of interactions for two separate trials (one
with a container and one with a non-container). The individual
behaviors are described below.
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Fig. 4. The objects used in the experiments. (Containers) The first two
rows show the 10 container objects: wicker basket, metal trash can, potpourri
basket, flower pot, bed riser, purple bucket, styrofoam bucket, car trash can,
green bucket, and red bucket. (Non-containers) The second two rows show
the same 10 objects as before but flipped upside down, which makes them
non-containers for this particular robot with this particular set of behaviors.

1) Drop Block Behavior:The height from which the robot
dropped the block over the object was the same for all
trials/objects. The drop positions were randomly selected from
a 2D Gaussian distribution centered above the object in a
plane parallel to the table. The standard deviation of this
distribution was empirically set to be proportional to the width
(in pixels) of each object. Inverse kinematics was used to
move the robot’s hand to the drop position. Thus, the small
block fell inside the container during approximately 70% of all
trials with containers. During the other 30% of the trials with
containers (and during trials with non-containers) the block
fell on the table. In some cases the block rolled off the table
(approximately 5% of all trials). In these cases, the block was
left off the table for the duration of the trial.

Dropping the block produced a lot of noise and large visual
movements. During trials when the block fell into a container,
however, the block moved less and made less noise.

2) Grasp Behavior: The robot grasped the object after
dropping the block above it. Grasping the object produced little
noise and only slightly moved the object. Thus, we expected
that the categorizations resulting from this behavior would be
somewhat less meaningful.

The robot failed to grasp the object in some cases (63
out of 2000 trials), which occurred when one of the robot’s
three fingers did not properly close. In these situations, a
person monitoring the experiments recorded the error. All of
the problematic trials were repeated after the initial round of
experiments were completed.

3) Move Behavior:After grasping the object with its left
hand, the robot moved the object toward the right side of its
body. Moving the object produced little noise, as the object
made little contact with the table and the block laid still either
on the table or inside a container. So, we expected that the
robot would only form meaningful categories based on its
visual observations from this behavior.
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Fig. 5. Snapshots from two separate trials with a container and a non-
container object. Before each trial a human experimenter reset the setup by
placing the block and the object at marked locations. After grasping the
block and positioning its arm at a random location above the object the robot
performed the six exploratory behaviors one after another.

Co-Movement Separate Movement

Fig. 6. Transformation of the video data into movement sequences for two
different executions of the movebehavior. (Left ) Co-movement was observed
during trials in which the block moved when the object moved. Here, the
block was inside a container and moved with it when the robot performed
the movebehavior. (Right) Separate movement outcomes occurred when the
block fell to the side of a container or during trials with non-containers.

4) Shake Behavior:The robot shook the object after mov-
ing it. Shaking took place well above the table to avoid
banging the object into the table. Shaking the object caused a
lot of movement and produced a lot of noise when the block
was inside a container. During trials with non-containers, how-
ever, the behavior produced little noise and rarely caused co-
movement between the block and the object. So, we expected
that meaningful categorizations would be produced for this
behavior.

5) Flip Behavior: The robot flipped the object over after
shaking it. Flipping the object produced sounds only during
trials in which the block was inside a container. During these
trials, the block fell out of the container and crashed into
the table. Thus, we expected that the robot would capture
differences between containers and non-containers using this
behavior.

6) Drop Object Behavior:The robot dropped the object
after flipping it. Dropping the object always produced sounds
and sometimes caused movement patterns between the block
and the object. The acoustic outcomes and the visual move-
ment patterns, however, were seldom sufficient to discriminate
containers from non-containers. So, we expected that the robot
might capture differences in size or material properties using
this behavior, but not functional differences.

IV. METHODOLOGY
A. Data Collection

Multiple audio and video sequences were collected by the
robot while it was performing the six exploratory behaviors,
B = [drop block,grasp, move,shake,flip, drop object]. The
six behaviors were organized into trials and always performed
one after another (see Fig. 5). For each of the 20 objects, the
robot performed 100 trials, for a total of 20 × 100 = 2000
trials. Because each trial consisted of 6 behaviors, the robot
performed 6 × 2000 = 12000 behavioral interactions.

Another way to describe this dataset is to say that each
behavior (e.g., shake) was performed 100 times on each of
the 20 objects. Thus, each of the six behaviors was performed
2000 times. During every interaction the robot recorded the
tuple (B,O,A, V ), where B ∈ B was one of the six behaviors
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Fig. 7. The feature extraction process for acoustic observations: 1) The raw sound wave produced by each behavior is transformed to a spectrogram. Each
spectrogram has 33 bins (represented as column vectors), which capture the intensity of the audio signal for different frequencies at a given time slice. Red
color indicates high intensity while blue color indicates low intensity. 2) An SOM is trained using randomly selected column vectors from the spectrograms
for a given behavior. 3) The column vectors of each spectrogram are mapped to a discrete state sequence using the states of the SOM. Each column vector
is mapped to the most highly activated SOM node when the column vector is used as an input to the SOM. See the text for more details.

performed on object O ∈ O, A was the recorded audio
sequence, and V was the recorded video sequence. Audio
data was sampled at 44.1 KHz over a 16-bit mono channel
and stored as wave files. Visual data was captured from the
robot’s 3-D camera as a sequence of 640x480 color images
and 320x240 depth images recorded at roughly 20 fps. The six
behaviors lasted between 1 and 4 seconds each. Drop object
and grasp took 1 second to complete; drop blockand flip 2
seconds; move3 seconds; and shake4 seconds.

The order in which the robot interacted with the objects
was chosen to minimize the effect of changing background
noise. In a dataset of this magnitude, transient ambient noise
can negatively impact the results (e.g., noise from the air
conditioning system or computer fans). Therefore, the robot
performed one trial with each of the twenty objects shown
in Fig. 4 before moving on to the second trial with the first
object, and so on.

B. Movement Detection

The robot processed the frames from the ZCam to track
the positions of the block and the object and to detect their
movements. During each trial, the object was tracked using
the center of mass of the largest blob with the corresponding
color. The same was done for the block, which had a different
color from the object. Movement was detected when the [x, y]
position of the block or the [x, y] position of the object
changed by more than a threshold, δ, over a short temporal
window [t′, t′′]. The threshold, δ, was empirically set to 2.5
pixels per two consecutive frames. A box filter with a width
of 3 was used to filter out noise in the movement detection
data. The movement detection data for the block and the object
from one behavioral interaction was used to create a movement
sequence (see section. IV.D). Figure 6 shows the sequence
of detected movements of the block and the object for two
different executions of the movebehavior.

C. Auditory Feature Extraction

Auditory features were extracted automatically by repre-
senting the sounds produced by each behavioral interaction
as a sequence of nodes in a Self-Organizing Map (SOM).
The feature extraction process is the same as in our previous
work [40]. The three stage process includes: 1) a Discrete
Fourier Transform which takes a 44.1 KHz audio sample, Ai,
and converts it to a 33 bin spectrogram, Pi = [pi

1, . . . , p
i
l],

where pi
j ∈ R

33 (the DFT window length was 26.6 ms,
computed every 10 ms); 2) a 2D SOM that is trained with
the spectrograms corresponding to one of the robot’s six
exploratory behaviors; and 3) a mapping, M(pi

j) → ai
j ,

of each spectrogram column vector, pi
j , to the most highly

activated state, ai
j , in the SOM when pi

j is presented as an
input to the SOM (see Fig. 7). The mapping process results
in a state sequence Ai = ai

1a
i
2 . . . ai

li
, where each ai

j stands
for one of the SOM nodes. For each behavioral interaction,
the corresponding SOM was trained using only 5% of the
available column vectors (see Fig. 7), which were randomly
selected from the spectrograms captured during this behavior.

The robot performed this procedure six times, once for
every behavior. It acquired a set of state sequences, {Ai}

2000
i=1 ,

for each of its six behaviors. This feature extraction method
was chosen because it does not require a human to select
the acoustic features that the robot will have to use. The
algorithm identified and computed features in an unsupervised
way. See [40] for further details.

D. Visual Feature Extraction

The robot extracted visual features using a procedure similar
to that used for extracting auditory features (see Fig. 8). That
is, visual features were extracted automatically by representing
the movement sequences of the block and the object produced
by each behavioral interaction as a sequence of nodes in a Self-
Organizing Map (SOM). The three stage process includes: 1) a
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Fig. 8. The feature extraction process for visual observations: 1) The video data recorded during each execution of a given behavior is transformed into a
movement sequence. The co-movement sequence pictured here was obtained after the robot performed the movebehavior with one of the containers. 2) An
SOM is trained using randomly selected column vectors from the set of all movement sequences for a given behavior. 3) Each movement sequence is mapped
to a discrete state sequence of SOM states. To do this, each column vector of the movement sequence is mapped to the most highly activated SOM node
when the column vector is used as an input to the SOM. See the text for more details.

movement detection step that takes a recorded video sequence,
V i, captured at 20 frames per second, and converts it into a
movement sequence, Mi = [mi

1, . . . ,m
i
l], where mi

j ∈ R
2;

2) a 2D SOM that is trained with the movement sequence
corresponding to one of the robot’s six exploratory behaviors;
and 3) a mapping, M(mi

j) → vi
j , of each co-movement

column vector, mi
j , to the most highly activated state, vi

j ,
in the SOM when mi

j is presented as an input to the SOM
(see Fig. 8). The mapping process results in a state sequence
Vi = vi

1v
i
2 . . . vi

ni , where each vi
j stands for one of the SOM

nodes.
Again, the robot performed this procedure six times, once

for every behavior. It acquired a set of state sequences,
{Vi}

2000
i=1 , for each of its six behaviors. The parameters used

for training each visual SOM were the same parameters used
for training the acoustic SOMs. The only difference between
the two feature extraction procedures was the size of the
column vectors. The column vectors used to represent spec-
trograms had 33 rows; the column vectors used to represent
co-movement sequences had 2 rows.

E. Learning Perceptual Outcome Classes

The acoustic outcome patterns produced by a given behavior
can be clustered automatically to obtain auditory outcome
classes. Similarly, the visual movement patterns produced by
a given behavior can be clustered automatically to obtain
visual outcome classes. In our case, the robot performed 6
behaviors and captured data from 2 modalities, so its task was
to learn 6 × 2 = 12 separate sets of outcome classes. More
formally, the robot learned k outcome classes from the set of
SOM state sequences, {Ai}

2000
i=1 or {Vi}

2000
i=1 , observed for one

modality during the execution of one of the 6 behaviors. An
unsupervised hierarchical clustering procedure based on the
spectral clusteringalgorithm was used for this task (spectral
clustering is a similarity-based clustering algorithm [45]).

The procedure was performed 12 different times to obtain
6 different sets of acoustic outcome classes and 6 different
sets of visual outcome classes. Figures 9 and 10 illustrate
the process of learning acoustic outcome classes and visual
outcome classes for one behavior, respectively.

The spectral clusteringalgorithm requires a similarity ma-
trix as its input. The similarity between outcomes Sa and Sb,
represented as sequences of SOM states produced by two dif-
ferent executions of the same behavior, was determined using
the Needleman-Wunsch global alignment algorithm [46][47].
The algorithm1 can estimate the similarity between any two
sequences if the data is represented as a sequence over a finite
alphabet. The general applicability of the algorithm has made
it popular for other applications such as comparing biological
sequences, text sequences, and more [47]. Computing the
similarity of two sequences requires a substitution cost (i.e.,
a difference function) to be defined for any two tokens in the
finite alphabet. Here the substitution cost is defined as the
Euclidean distance between any two nodes in the SOM (each
node in the 2D SOM has an x and a y coordinate).

The resulting similarity matrix, W, was used as input
to the unsupervised hierarchical clustering procedure, which
partitions the input data points (i.e., either audio or video
sequences) into disjoint clusters. The algorithm exploits the
eigenstructure of the matrix to partition the data points. Find-
ing the optimal graph partition is an NP-complete problem.
Therefore, the Shi and Malik [49] approximation algorithm
was used, which minimizes the normalized cutobjective
function. The following steps give a summary of the algorithm:

1) Let Wn×n be the symmetric matrix containing the sim-
ilarity score for each pair of outcome sequences.

1The Needleman-Wunsch algorithm maximizes the similarity between two
sequences. An equivalent approach is to minimize the Levenshtein edit
distance [48] between the sequences.
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Fig. 9. Illustration of the process used to learn acoustic outcome classes. Each
spectrogram is transformed into a state sequence using the trained SOM, which
results in 2000 sequences, {Ai}

2000

i=1
, for each behavior. The acoustic outcome

classes are learned by recursively applying the spectral clustering algorithm
on this set of sequences. The acoustic outcome classes, C = {c1, ..., ca},
are the leaf nodes of the tree created by the recursive algorithm.

2) Let Dn×n be the degree matrix of W, i.e., a diagonal
matrix such that Dii =

∑
j Wij .

3) Solve the eigenvalue system (D − W)x = λDx for
the eigenvector corresponding to the second smallest
eigenvalue.

4) Search for a threshold of the resulting eigenvector to
create a bi-partition of the set of acoustic (or visual)
outcomes that minimizes the normalized cut objective
function. Accept this bi-partition if the resulting value
of the objective function is smaller than a threshold α.

5) Recursively bi-partition subgraphs obtained in step 4 that
have at least β audio or video sequences.

The output of this procedure is k outcome classes C =
{c1, ..., ck}, which are represented as the leaf nodes in a tree
structure (see Fig. 9 and Fig. 10). In our previous work [41],
the value α used in step 4 was set to 0.995. The same value
was used here as well. The value for β used in step 5 was
empirically set to 40% of the size of the dataset that was
initially passed to the spectral clustering algorithm.

V. OBJECT CATEGORIZATION

A. Learning Object Categories

The frequency with which some outcomes occur with dif-
ferent objects can be used to cluster the objects into categories.
For example, when the robot drops a block over a container, it
will hear the sound of the block bouncing inside the container
more often than when it drops the block over a non-container,
in which case the block falls on the table. Similarly, when the
robot moves a container, it will see the block move with the
container more often than when it moves a non-container, in
which case the block does not move.

Given a set of outcome classesC ={c1, . . . , ck} ex-
tracted by the robot while interacting with objects O =

Set of 2000 Movement Sequences

for a Given Behavior

Set of 2000 State Sequences

(one for Each Movement Sequence)

SOM

Spectral

Clustering

Learned Outcome Classes
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Fig. 10. Illustration of the process used to learn visual outcome classes. Each
movement sequence is transformed into a state sequence using the trained
SOM, which results in 2000 state sequences, {Vi}

2000

i=1
, for each behavior.

The set of sequences is recursively bi-partitioned using the spectral clustering
algorithm in order to learn visual outcome classes, C = {c1, ..., cv}, which
are the leaf nodes of the tree created by the recursive algorithm.

{O1, . . . , O20}, the robot acquired an outcome occurrence
vector Eu = [eu

1 , . . . , eu
k ] for each object Ou. The value

of each eu
j represents the number of times the outcome cj

occurred with object Ou, divided by the total number of
interactions (100 interactions in this case). In other words,
each outcome occurrence vector Eu encodes a probability
distribution over the set of outcome classes, such that eu

j

specifies the probability of observing outcome class cj with
object Ou over the entire history of interactions.

The robot formed object categoriesby clustering the fea-
ture vectors E1, . . . , E20 (one for each of the 20 objects shown
in Fig. 4). The X-means unsupervised clustering algorithm was
used for the procedure. X-means extends the standard K-means
algorithm to automatically estimate the correct number of
clusters, k, in the dataset [50]. Twelve different categorizations
were constructed (one acoustic categorization and one visual
categorization for each of the six exploratory behaviors).

B. Object Categorization Results

Figure 11 visualizes the twelve categorizations produced for
each behavior–modality combination. The twelve categoriza-
tions are described in more detail below.

1) Acoustic Categorizations:Four of the six behaviors
produced distinguishable acoustic signals that the robot could
use to form object categories: drop block,shake,flip, and drop
object. The (mostly silent)graspand movebehaviors produced
acoustic signals that were very similar for all objects and the
algorithm clustered all 20 objects into the same object class.

The drop blockbehavior produced three clusters that were
almost homogeneous. The first cluster had only containers and
the tall metal non-container (the only misclassified object).
The second cluster had the rest of the non-containers. The
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last cluster had the three soft material container baskets. The
difference between the softness and hardness of the objects’
materials was distinctive enough to create two container cat-
egories (cluster 1 and 3 in Fig. 11). For example, the two
wicker baskets and the styrofoam bucket (in cluster 3) are
made of soft materials, which muffled the block’s sound. In
contrast, when the block fell into one of the hard containers
(in cluster 1) it bounced around longer and produced a louder
sound.

The shakebehavior produced results similar to the drop
block behavior. In this case, however, there were only two
clusters and the three soft-material container baskets were
incorrectly classified as non-containers. These three objects
produced very little sound when shaken, even if the block was
inside them. Thus, they sounded similar to the non-containers,
which seldom made noise during this interaction. The tall
metal trash can was again misclassified.

The flip behavior was the most reliable way to discriminate
between containers and non-containers in our experiments.
It produced a perfect classification. Flipping the object over
produced a distinct sound in the case of containers as the
small block fell onto the table. In the case of non-containers,
no sound was generated as the block was already on the table.

The drop objectbehavior resulted in clusters that were com-
pletely heterogeneous. The behavior did not produce different
acoustic outcomes for containers and non-containers.

2) Visual Categorizations:All six behaviors produced vi-
sual movement patterns that the robot could use for object
categorization (see Fig. 11). The drop blockbehavior was not a
reliable way to categorize containers from non-containers. The
categorization resulted in two noisy clusters, in which the robot
incorrectly classified four containers and four non-containers.
The categorization was similar to a random separation of the
objects.

The grasp behavior resulted in a categorization with two
clusters. Six containers were clustered together and the rest of
the objects were classified to the other cluster. The behavior
was more useful than expected because it generated a tiny
amount of movement. However, in some trials the duration of
movement was so short that it was filtered out. Four containers
were misclassified due to this noisy data.

The move behavior produced a good categorization of
containers and non-containers. Only three objects were mis-
classified: the metal non-container was incorrectly classified
as a container; the tall metal trash can and the car trash can
were incorrectly classified as non-containers. Each of the three
objects has a unique shape, which may help to explain why
the objects were misclassified. For example, the metal non-
container sometimes functioned as a container since it had a
3/4” lip that could cause the block to come to rest on top of
the object. Subsequently, during the movebehavior the block
frequently co-moved with the metal non-container.

The shakebehavior produced results slightly better than the
move behavior. Only two objects were misclassified in this
case. Shaking the containers produced slight oscillations in
the position of the block and the containers when the block
was inside them, which allowed the robot to form a good

categorization. The skinny car trash can was misclassified
probably due to its width—it more readily occluded the block
as it was shaken. The narrow shape also kept the block from
falling inside the container as often as it fell inside the other
containers.

The flip behavior produced a near–perfect classification
of the objects. Flipping the object over produced a lot of
block movement during trials when the block fell out of the
containers. In all other trials, the block did not move. The
skinny car trash can was again misclassified.

The block appearedto move, however, during several trials
with the green non-container, which is why it was misclassified
as a container. The block often came to rest at the perimeter
of the visual field where the depth position fluctuated during
these trials.

The drop objectbehavior was not a reliable way to catego-
rize containers and non-containers. The behavior led to two
arbitrary clusters. The red bucket and the purple bucket were
classified together. The rest of the objects were placed in the
other cluster.

C. Evaluating the Object Categorizations

To check whether the robot was able to extract meaningful
object clusters we computed the category information gain.
The information gain captures how well the object categories
formed by the robot resemble the categories specified by a
human. The information gain is high when the category labels
assigned to the objects match human-provided category labels.
It is low otherwise. In other words, if the information gain is
high, then the robot has categorized the objects in a meaningful
way (even though the robot does not know the human words
corresponding to the categories).

Let λ(f) =[O1,. . .,OMf ] define an object categorization
over the set of objects O, for a specific behavior–modality
combination Bf , where Oi is the set of objects in the ith

cluster. Let pi
c and pi

nc be the estimated probabilities that an
object drawn from the subset Oi will be a container or a non-
container (as defined by human labels). Given a cluster of
objects Oi, the Shannon entropy of the cluster is defined as:

H(Oi) = −pi
clog2(p

i
c) − pi

nclog2(p
i
nc)

In other words, an object cluster containing mostly contain-
ers (or mostly non-containers) will have low entropy, while
a cluster containing an equal number of containers and non-
containers will have the maximum entropy. The information
gain for the object categorization λ(f) =[O1,. . .,OMf ], which
was learned using behavior-modality combination Bf , is given
by the following formula:

IG(λ(f)) = H(O) −

Mf∑

i=1

|Oi|

|O|
H(Oi)

To get a baseline information gain value for comparison, the
information gain was computed for a random labeling. That
is, the values for pi

c and pi
nc were estimated after randomly

shuffling the labels of the objects in all clusters Oi (where
i = 1 to Mf ) while preserving the number of objects in each
cluster. This procedure was repeated 100 times to estimate



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT

Acoustic Clusters Visual Clusters
D

ro
p

B
lo

ck
G

ra
sp

M
ov

e
Sh

ak
e

Fl
ip

D
ro

p
O

bj
ec

t

Fig. 11. Visualization of the object categories formed by the robot for the six exploratory behaviors and the two sensory modalities. Incorrect classifications
are framed in red (based on category labels provided by a human and the majority class of the cluster). The quality of each categorization depends on the
behavior that was performed and the sensory modality that was used for clustering. For example, the flip behavior produced both acoustic outcomes and visual
movement patterns that resulted in a perfect and a near–perfect classification of containers and non-containers, respectively. Combinations of other behaviors
and modalities produced clusters that were not always so pure.
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Fig. 12. Information gain of the object categories formed by the robot for
each behavior–modality combination. For comparison, the information gain
for a random classification is shown next to the object category information
gain. The random information gain was computed by shuffling the labels 100
times and estimating the mean and the standard deviation. When computing
the information gain, the correct object labels (container or non-container)
were provided by a human. For some behaviors the acoustic information gain
was zero, which is denoted with the * symbol.

the mean and the standard deviation. Figure 12 shows the
information gain for each categorization and compares it to
the corresponding baseline average random information gain.

The figure shows that the categorization produced using
acoustic outcomes from the flip behavior most closely matches
the labels provided by an adult human. Next in order are: the
categorization produced using the acoustic signals from the
drop block behavior, the categorizations produced using the
visual movement patterns from the flip, shake,graspand move
behaviors, and the categorization produced using the acoustic
signals from the shakebehavior. All of these categorizations
have an information gain that is better than chance. The
remaining categorizations have an insignificant information
gain with respect to the human-provided labels, which shows
that they are not suitable for capturing the functional properties
of containers.

The fact that some clusterings formed by the robot were
noisy was expected. Some behaviors are simply better at
capturing certain object properties than others. With 20 objects
of various shapes, sizes, and materials there are many ways
the robot could have categorized the objects. However, no
behavior completely separated objects by size or material.
On the other hand, seven behavior–modality combinations
captured the functional properties of the containers well (i.e.,
acoustic signals from the drop block,shake, andflip behaviors;
and visual movement patterns from the grasp, move,shake,
and flip behaviors). The next section shows how the different
categorizations can be combined into a single one.

VI. UNIFIED OBJECT CATEGORIZATION

A. Unification Algorithm

As Fig. 11 shows, by categorizing objects using multiple
behaviors and multiple modalities, the robot can form many

Fig. 13. Visualization of the unified object categorization produced by the
consensus clustering algorithm, which searched for a consolidated clustering
of the twelve input clusterings shown in Fig. 11. The unified categorization
closely matches ground-truth labels provided by a human. Only one object
was misclassified.

different categorizations of the objects. Some categorizations
closely match the object labels provided by a human; others
are noisy. Without a method to unify the different categoriza-
tions of the objects, however, an object categorization is at
mostmeaningful with respect to the behavior and the modality
that were used to produce it.

Therefore, it is desirable to form one unified categorization
from multiple categorizations of the objects. That is, given a
set of object categorizations Λ = λ(1), . . . , λ(r) and a desired
number of object categories p, the robot forms a single, unified
categorization λ̂. The categorization λ̂ defines p categories of
objects and is determined to be representative of the input
categorizations Λ using the objective function φ(Λ,λ̂). The
function measures the total normalized mutual information
between a set Λ containing r object categorizations and a
single categorization λ̂. More formally,

φ(Λ, λ̂) =

r∑

q=1

φNMI(λ̂, λ(q))

where φNMI(λ̂, λ(q)) is the normalized mutual information
between categorizations λ̂ and λ(q) (see [51]). Thus, the
best unified categorization is defined as the clustering of the
objects that has the highest possible total normalized mutual
information with respect to the multiple input categorizations.
Finding the best clustering, however, is intractable. Therefore,
it is necessary to search for a clustering that is approximately
the best. For this task, we used the hard consensus clustering
algorithm [51]. The algorithm takes as input a set of object
categorizations Λ and a value k, employs three functions that
independently solve for a good approximation, and outputs
the best unified clustering that it finds. The output of this
procedure is a labeling Li ∈ L for each object Oi ∈ O.

In this case, the set of object categorizations Λ consisted of
the twelve categorizations shown in Figure 11. The algorithm
was run several times with p varying from 2 to 10. From
these runs, the unified object categorization was chosen as the
clustering that maximized the objective function. The result of
unifying the twelve object categorizations is shown in Fig. 13.
The figure shows that the hard consensus clustering algorithm
was able to find a meaningful categorization even though
only seven of the twelve behavior–modality combinations
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produced a good clustering of the objects. Only one object
was misclassified in the unified object categorization.

For completeness, a brief description of the three functions
used by the hard consensus clustering algorithm is provided
below. The algorithm runs these functions in parallel and
picks one of the category results that maximizes the NMI.
The three functions are: 1) The Cluster–based Similarity
Partitioning Algorithm (CSPA) generates a similarity matrix
for the objects. Each entry in this matrix represents the
number of times that two objects appear in the same cluster.
A similarity–based clustering algorithm is applied to this
matrix to cluster the objects. 2) The HyperGraph Partitioning
Algorithm (HGPA) constructs a hypergraph and partitions it
into k disjoint components by cutting a minimal number of
hyperedges. A hypergraph is a special graph in which an edge
can connect to many vertices. In our case, the objects are the
vertices of the hypergraph and the clusters of objects are the
edges. 3) The Meta-CLustering Algorithm (MCLA) groups
multiple similar clusters of objects until there are at most k

disjoint clusters. For more details see [51].

B. Robustness of the Algorithm

To test the generalizability properties of the algorithm we
ran three additional experiments that are briefly summarized
below. In the first experiment, the consensus clustering al-
gorithm was able to form a meaningful categorization when
the object classes were skewed to have more containers than
non-containers. The set of objects was skewed by using
only 4 of the 10 non-containers. The robot categorized the
objects using the same learning framework. This process was
repeated 10 times with different sets of 4 randomly chosen
non-containers. The algorithm misclassified 2 objects in 8 of
these instances and 1 object in another instance. In the second
experiment, the interaction data for one random container and
one random non-container was removed for each behavior–
modality combination. The robot categorized the objects using
the same learning framework, and the process was repeated 10
times with different sets of removed data. All resulting unified
categorizations matched the categorization shown in Fig. 13.
Thus, the algorithm was able to form a meaningful catego-
rization even when some of the interaction data was missing.
The third experiment tested an alternative approach to forming
a unified object categorization by directly concatenating and
clustering the feature vectors used to produce the individual
categorizations (see section V.A). The X-means algorithm was
used to do the clustering, which produced three clusters with
two misclassified objects. This result is inferior to the unified
categorization shown in Fig. 13. Overall, the algorithm proved
to be quite robust.

By combining the different categorizations into a single one,
the robot effectively ruled out the nonsense categorizations
that it acquired, allowing it to form two object categories that
are close to what a human would call containers and non-
containers. Furthermore, the unified categorization condensed
a large amount of data into a single categorization, which
described the functional properties of objects across the robot’s
whole sensorimotor repertoire. Having a single categorization

also meant that a single perceptual model could be learned,
and used to infer the object category of novel objects using
only passive observation. The next section describes how the
robot was able to form a perceptual model for the two object
categories shown in Fig. 13.

VII. CATEGORIZING NOVEL OBJECTS

It is impractical for a robot to categorize all novel objects
by first interacting with them for a long time. To reduce
the exploration time, the robot can learn a perceptual model
for each acquired object category in the unified object cate-
gorization (see Fig. 13) and use that model to estimate the
category of a novel object. More specifically, let fi ∈ R

n be
the visual feature vector for object Oi, and let Li ∈ L be the
category label of that object according to the learned unified
categorization, where L is the set of object categories. Given
training examples (fi, Li)

i=N
i=1 , the task of the robot is to learn

a recognition model M that can estimate the correct category
of a novel object Otest given the object’s visual features ftest.
In other words, M(ftest) → Ltest, where Ltest ∈ L is the
estimated category of the novel object. The next subsection
describes the feature extraction routine used to compute the
visual features fi ∈ R

n for both familiar and novel objects.

A. Feature Extraction

To extract the visual features of objects, principal compo-
nent analysis (PCA) was used to find compact representations
for the unlabeled visual sensory stimuli. PCA transforms
the input data into a new coordinate system, where each
coordinate represents a different projection of the input data.
The coordinates are ordered based on how well the projections
explain the variance in the data. More formally, the input
images xi ∈ R

m are transformed into a set of independent
basis vectors b1, . . . ,bn ∈ R

m and a vector of weights
fi ∈ R

n such that xi − x̄ ≈
∑

j bjf
j
i , where x̄ is the mean of

all input images. The weights fi ∈ R
n represent the compact

features of the high-dimensional input image xi.
The algorithm was trained on 30x30 depth images, one for

each of the 20 objects that the robot interacted with. The
training images were extracted automatically from the larger
320x240 depth images captured by the ZCam. The objects
were located using background subtraction and a boundary
box was placed around them. The corresponding locations in
the depth image were cropped and scaled to 30x30 pixels. The
resulting images were used as input to the PCA algorithm. The
first five basis vectors computed by the algorithm captured
90% of the variance in the data and are shown in Fig. 15. The
figure shows that the first vector, which captures 43% of the
variance, is a convex feature characteristic of non-containers.
The second and the third vectors, which jointly capture 40%
of the variance, represent a feature characteristic of containers.
The next subsection describes the recognition algorithm that
maps the visual features of an object to its estimated object
category.
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Fig. 14. The 20 depth images of the objects used as input to the PCA
algorithm. Each image was generated by finding the object in the larger
320x240 depth image and scaling the region to 30x30 pixels.

42.8% 31.3% 8.3% 4.4% 3.1%

Fig. 15. A visualization of the first five principal components computed by
the PCA algorithm using the images shown in Fig. 14 as input. The percentage
of the variance explained by each component is listed below it. These five
principal components, along with the category labels from Fig. 13, were later
used to classify novel objects as ‘containers’ or ‘non-containers.’

B. Recognition Algorithm

The object category recognition model M was trained on
the visual features of the 20 objects that the robot interacted
with. Let fi ∈ R

2 represent the extracted visual features for
the ith object, and let Li ∈ L be its category according to the
unified categorization (see Fig. 13). Using this formulation,
the robot acquired the set (fi, Li)

20
i=1, which contains the 20

labeled training examples available to it.
The robot’s recognition model, M, was implemented as a

k-Nearest Neighbors (k-NN) classifier with k = 3. K-NN is
an instance-based learning algorithm that does not build an
explicit model of the data, but simply stores all labeled data
points and uses them when the model is queried to make a
prediction. Given a novel object, Otest, the robot extracted its
visual features ftest, computed from a 30 x 30 depth image
of the object, and the learned basis vectors. Subsequently, k-
NN was used to find the k closest neighbors of ftest in the
training set, using the Euclidean distance function. Finally, the
novel object was labeled with the majority category of the k

closest neighbors. For example, if 2 of the closest neighbors
to ftest were containers, then the novel object was labeled as
a container as well.

The classifier was tested on how well it could detect the
object category of 30 novel objects by passively observing
them. The set of novel objects included 15 containers, which

Novel Containers

Novel Non-containers

Fig. 16. The result of using a Nearest Neighbor classifier to label novel
objects as ‘containers’ or ‘non-containers’. The mixing bowl (outlined in red)
was the only misclassified object. Visual features were extracted for each of
the 30 novel objects and used in the classification procedure.

were selected to have a variety of shapes, sizes, and material
properties. The other 15 objects were non-containers, which
were the same novel containers only flipped over (see Fig. 16).
Using the extracted visual features and the k-Nearest Neighbor
classifier, the robot assigned the correct object category to 29
of the 30 objects. This result implies that the robot not only has
the ability to interactively distinguish between containers and
non-containers, but also to learn a visual model that allows it
to passively determine the functional category of novel objects.

VIII. EVALUATING THE EFFECT OF EXPERIENCE ON THE
QUALITY OF OBJECT CATEGORIZATIONS

Intuitively, the quality of an object categorization should
depend on how much experience the robot has had with each
object. As Fig. 12 shows, the robot formed seven meaningful
categorizations after 100 interactions were performed with
each object. The unification of all twelve categorizations also
produced a meaningful categorization, in which only one
object was misclassified. Even fewer interactions, however,
may be required to reproduce these results.

To find out how much experience is necessary to form a
good object categorization, the categorization quality was eval-
uated as the number of interactions, N , with each object was
increased from 10 to 100. The learning framework described
in sections IV and V was used to produce the categorizations
for this evaluation (i.e., the same learning framework used to
produce the results in Fig. 11, except that the trained SOM was
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Fig. 17. Information gain for the acoustic categorizations formed by the
drop block, shake, and flip behaviors as the number of interactions with
each object is increased. This graph was computed by randomly sampling
N interactions from the 100 interactions with each object and re-running
the learning algorithms on the smaller dataset. This process was repeated
100 times for each value of N to estimate the mean and standard deviation.
Human-provided category labels were used to compute the information gain.

reused to reduce computation time)2. The set of N trials used
to compute a categorization was randomly sampled from the
set of all 100 trials performed on each object. The quality of
a categorization was determined by computing its information
gain using human–provided labels. The process was repeated
100 times for each value of N to estimate the mean and
the standard deviation. Although only seven out of twelve
behavior–modality combinations originally led to a meaningful
object categorization, the unification procedure was performed
on all twelve combinations. The quality of the resulting unified
clustering was also evaluated using its information gain.

The results are shown in two graphs to simplify their analy-
sis. Figure 17 shows the quality of the acoustic categorizations
for the drop block,shake, andflip behaviors. Figure 18 shows
the quality of the visual categorizations for the grasp, move,
shake, andflip behaviors. The other five behavior–modality
combinations are not depicted in the graphs because their
information gain remained near zero. Also not shown is the
quality of the unified categorization, which remained fairly
constant at 0.75 as the value for N increased from 10 to 100.

The mean information gain for all of the categorizations
converged after about 40 interactions with each object were
performed. The quality of the individual categorizations in-
creased as the robot gained more experience. The mean
information gain converged when the features used to represent
the functional properties of each object stabilized. In contrast
with the individual categorizations, the information gain of the

2It is important to point out that the trained SOM represents the robot’s
self–organized “feature extraction” mechanism. This does not have to be
part of the robot’s “object categorization” mechanism. In fact, evidence from
developmental psychology suggests that the auditory features that infants learn
are fixed by the time they learn words. When infants are around six months
old they are sensitive to the sounds that are used in many different languages.
By nine months, however, they have learned a fixed set of auditory features,
which are specific to their native language [52]. For example, at this age, it
would be more difficult for an infant raised in an English–speaking home to
distinguish between some of the sounds that an infant raised in a Chinese–
speaking home can distinguish without a problem.
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Fig. 18. Information gain for the visual categorizations formed by the grasp,
move,shake, andflip behaviors as the number of interactions with each object
is increased. This graph was computed using the same procedure as that
described in Fig. 17.

unified categorization converged after only 10 interactions with
each object. Thus, the unified categorization was meaningful
even when the robot had an insufficient amount of data to
fully characterize the functional properties of each object for
the individual behavior–modality combinations.

The mean information gain for the individual categoriza-
tions converged to values that are comparable to those obtained
using the original ordering of the dataset (see Fig. 12). Because
order–dependent clustering algorithms were used in this frame-
work (Spectral Clustering and X-means), some of the catego-
rizations changed when the dataset was shuffled. For example,
the mean information gain of the visual categorizations for the
grasp,move, andshakebehaviors improved slightly. The rest
of the behavior–modality combinations reached information
gain values similar to those in Fig. 12.

The effect that the order–dependent clustering algorithms
had on the categorization performance is most clear when
the number of interactions, N , with each object is 100.
Instead of consistently identifying the same categorization
of the objects for each behavior–modality combination, the
framework identified a distribution of categorizations. The
histograms in Fig. 19 show that certain behavior–modality
combinations were affected more than others. For example, the
grasp–visionbehavior–modality combination was only slightly
affected (the flower pot object was misclassified as a non-
container 4 times; it was correctly classified as a container
96 times). The move–visionbehavior–modality combination
was significantly affected, however, as three objects oscillated
between categories. This analysis was also performed for the
unified categorization, where 62 out of 100 categorizations
matched the results obtained using the original ordering of
the dataset. In general, if the functional properties of an object
placed it somewhere between containers and non-containers,
then the resulting category label for this object tended to
fluctuate. Fluctuations in the individual categorizations seldom
reduced the quality of the unified categorization.
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Fig. 19. The distribution of information gain values for different categorizations obtained with different behavior–modality combinations. Each histogram
was generated by computing the information gain values for 100 different categorizations of the objects, which were obtained by running the framework 100
times on different orderings of the dataset.

IX. CONCLUSIONS AND FUTURE WORK

This paper described a computational framework for learn-
ing object categories, in which a robot explored objects using
multiple behaviors and sensed the resulting outcomes using
multiple sensory modalities. The framework was evaluated
using an object categorization task with 20 containers and non-
containers. The robot observed the acoustic signatures and the
visual movement patterns of the objects as it performed six
different exploratory behaviors. A separate object categoriza-
tion was produced for each behavior–modality combination,
which resulted in twelve different categorizations of the ob-
jects. These categorizations were then unified using consensus
clustering into a single object categorization. It was shown that
this behavior–grounded object categorization is meaningful
when compared with human–provided object labels. It was
also shown that this level of categorization performance was
attainable after only 10 interactions were performed with
each object for each behavior–modality combination. Finally,
this paper also showed that a visual classifier can effectively
categorize novel objects when it is trained using the category
label for each object.

This is the first framework in which an object categorization
formed by a robot was constructed by creating many different
categorizations for a set of objects, which correspond to
different behavior–modality combinations, and then unifying
them into a single one. Our methodology is consistent with
Leslie Cohen’s definition that object categorization is about
finding similarities among perceptually different objects [31];
whereas object recognition is about finding differences among
perceptually similar objects [53]. The results showed that
some of the perceptual differences (e.g., softness) between the
objects were captured by the individual categorizations formed
by the robot. However, by unifying many different individual
categorizations, the robot ignored these perceptual differences
and formed a categorization based only on the containment
property, which was the most common thing between the
objects.

In the end, the experience that the robot acquired in this
large–scale experiment was condensed into a single object
categorization. The robot had knowledge of the functional
properties of each object in terms of the frequency with which

different acoustic outcomes and different visual movement
patterns occurred with it. The robot also knew the differences
between the objects in terms of this frequency information,
which served as the basis for categorizing the objects. Finally,
the robot knew the visual appearance of containers and non-
containers. Having the option to categorize an object by
either its functional properties or its visual appearance is
advantageous, and mirrors some of the characteristics of object
categorization in humans [54].

The framework presented here can be extended in several
possible directions. One possible extension is to reduce the
human input provided to the object categorization framework.
For instance, the object IDs were provided by a human and
used during the categorization procedure. It may be possible to
use object recognition models to eliminate the dependency on
human–provided object IDs. It is also desirable to let the robot
learn its own exploratory behaviors. In the current framework,
the behaviors were encoded by a human programmer. Presum-
ably, it should be possible for a robot to learn these behaviors
on its own.

Another possible extension of this work is to make the
framework capable of categorizing many different types of
objects. Intuitively, finding a meaningful categorization for
a large number of object types would require the robot to
have an increased amount of experience with each object. The
robot could use more sensory modalities with each behavior,
however, to reduce the amount of experience that is required.
For example, tactile and proprioceptive sensory modalities
could be added in order to capture more information during
each interaction. Our previous work has shown that by adding
more sensory modalities the robot could improve its object
recognition abilities [55]. The same is probably true for object
category recognition.
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