Natural Environment Monitoring at Georgia Tech 15 min

- Introduction 1
- 2. Problem Constraints
- 3. SLAM
- 4. Loop Closures
- 5. Evaluation

USV and Environment

Impact: Opportunities for new monitoring applications in natural environments

1. Introduction: 1. Visual Environment Monitoring

Satellite views

 \checkmark

X

Fidelity Spatial Coverage Continuous Time

Stationary cameras

Moving camera

 \checkmark

1. Introduction: 2. Desired Results

Time-lapses

Sequence 1: unaligned Sequence 2: aligned

Changes

1. Introduction: 3. Direction

Geometry-based

(A point cloud)

Correspondences are appearance-invariant (given the map and the camera poses)

Exploit spatial information to achieve data association across seasons.

4

2. Dataset

Lakeshore environment

- 704x480 images @ 10 Hz
- constant velocity
- GPS
- IMU

• 1 km perimeter

Dec

~Biweekly Surveys

- 30+ per year
- 4 years
- 120+ surveys

3. SLAM: 1. Single-Session

Feature Extraction and Tracking

Factor Graph

Grid Harris corners Kanade–Lucas–Tomasi feature tracker 300 features per image

<u>Variables</u>

velocity, R3

0.

- camera pose, SE3
- landmark, R3

Result

~3500 keyframes ~100,000 map points compute: 16 GB, two minutes ~3.5 pixels reprojection error

Factors

- constant velocity
- GPS prior
 - 3D-2D projection
 - "Smart" factor

3. SLAM: 1. Multi-Session

Problem Representation

• poses, SE3 • landmarks, R3

across seasons same season

• Stopping criterion: 0.01 m

- med change
- ISLC outliers are explicitly removed each reprojection error check

iteration, based on a

Algorithm

Factor Graph

Griffith et al.; 2016; 2019

4. Loop Closures. 1. Data Association Across Surveys

ORB Local Image Features

SIFT Flow

- Images were more often the same scene using SIFT Flow (low-res)
- Appearance lacked matching power after 2-3 months

4. Loop Closures. 2. Extensions to SIFT Flow

SIFT-Flow Constraints

Data term

Regularization term

Smoothness term

Coarse to fine alignment

Added Alignment Constraints

Alignment verification check

Epipolar line constraints

Forward-backward match constraints

Projected map point hypothesis constraints

Unmatched pixels can be tightly constrained!

4. Loop Closures. 3. Loop Closure Search

1. Acquiring Inter–Session Landmark **Observations**

2. Loop Closure Verification

3. Viewpoint Selection (independent of appearance)

5. Evaluation: 1. Map-Centric Data Association

Map points

SIFT Flow + Extensions

SIFT Flow

5. Evaluation: 2. Time-lapses

- Image sets were aligned and then hand—sorted into time—lapses

• Approximately a third included 20+ images (out of a max size of roughly 33).

5. Evaluation: 3. Gauging the Errors

We could do better by improving SLAM

Length of time-lapses by scene

Pose error

Questions?