Policy Shaping: Integrating Human Feedback with Reinforcement Learning

Institute for Robotics and Intelligent Machines Georgia Institute of Technology

Presented at RLDM 2013 and published in NIPS 2013.

The Agent-Environment Interaction

From Sutton and Barto. 1998

The Agent-Environment Interaction

Integrating Human Feedback

Integrating Human Feedback

Adding the Feedback Channel

Doesn't the RL Loop Already Encapsulate Human Feedback?

It's not so simple.

(Thomaz and Breazeal; 2008)

"The communication from the human teaching partner cannot be merged into one single reward signal."

Separating Feedback from MDP Reward

The Hidden Step In These Methods

The Hidden Step In These Methods

- The conversion from feedback into a reward is *ad hoc*.
- Identifying a good reward requires solving the learning problem beforehand, which defeats the purpose.
- Feedback can have a delayed effect on exploration.

Policy Shaping

What These Labels Mean

(assuming there's a single optimal action per state)

 $s_t a_t$ is "right": No further exploration is needed in state s_t

What These Labels Mean

(assuming there's a single optimal action per state)

 $s_t a_t$ is "right": No further exploration is needed in state s_t

 $s_t a_t$ is "wrong": The agent should cease exploration down the path through action a_t in state s_t .

Feedback Consistency

Feedback History for $s_t a_t$

"right"	"right"
"right"	"wrong"
"right"	"right"
"right"	"right"
"right"	"right"

Noise in the feedback channel means we cannot simply prune actions from the search tree

Here feedback has consistency C=0.9

(cf. Pradalier et al., 2003)

Information Theoretic 'Pruning'

BAYES RULE $P(H|D) = \frac{P(D|H) P(H)}{P(D)}$

DATA

HYPOTHESES

Feedback History for $s_t a_t$

"right"	"right"	
"right"	"wrong"	
"right"	"right"	
"right"	"right"	
"right"	"right"	

 $s_t a_t$ is optimal $s_t a_t$ is suboptimal

Advise

The probability the state-action pair, *s*,*a*, is optimal: $\pi_F(s,a) \propto C^{\Delta_{s,a}} (1-C)^{\sum_{j \neq a} \Delta_{s,j}}$

 $\Delta_{s,a}$ - the difference between # right and # wrong labels

 $\ensuremath{\mathcal{C}}$ - the feedback consistency

The Information Is Still Incompatible

Top: a probability distribution over hypotheses about which action is optimal.

Bottom: an estimate of the long—term expected discounted reward for a state—action pair.

Can We Get Probabilities From Q-values?

- We can estimate the probability an action is optimal using Pr(Q(s,a) > Q(s,!a))
- The uncertainty in a Q-value can be modeled using a normal distribution.

Bayesian Q-learning

(Dearden et al. 1998)

• Maintain parameters that specify a normal-gamma distribution for each state-action pair:

 $\mathcal{N}(\mu_{s,a}, \tau_{s,a}) \sim Normal - Gamma(\mu_0^{s,a}, \lambda^{s,a}, \alpha^{s,a}, \beta^{s,a})$

- Sample each distribution, and then take the max 100 times to obtain p(Q(s, a) > Q(s, !a)).
- This gives: $\pi_R(s,a)$

Now The Signals Are Compatible

Top: a probability distribution over hypotheses about which action is optimal.

Bottom: a probability distribution over hypotheses about which action is optimal.

Learning From Both Sources of Information

p(H|rewards, feedback, C)

H is the hypothesis that s, a is optimal and s, !a is suboptimal

 $\propto p(rewards, feedback|H, C)$ $\propto p(feedback|rewards, H, C) \times p(rewards|H, C)$ $\propto p(feedback|H, C) \times p(rewards|H, C)$ $\propto p(H|feedback, C) \times p(H|rewards)$

 π_F × π_R (Pradalier *et al.,* 2003) (Bailer-Jones and Smith. 2011.)

Learning From Both Sources of Information

$\pi(s,a) \propto \pi_F(s,a) \times \pi_R(s,a)$

(Pradalier *et al.,* 2003) (Bailer-Jones and Smith. 2011.)

The Complete Advise Algorithm

Step 1: Create the Human Feedback policy.

Step 2: Combine both policies into one.

The Domains We Used

Pac-Man

The Domains We Used

Frogger

k

Pac-Man

'oot_window, _canvas, _canvas_x, _canvas_y, _canvas_xs, _canvas_ys, _

The Domains We Used

Source of Human Feedback

Source of Human Feedback

- Instead of humans, we used an *oracle* to provide feedback.
- An oracle *simulates* the feedback from a real human.
- The oracle was a database consisting of the optimal action for each state.
- This allowed us to test several scenarios with different feedback likelihood and consistency.

The Four Scenarios We Tested

Ideal CaseReduced Feedback
$$\mathcal{L} = 1.0; \mathcal{C} = 1.0$$
 $\mathcal{L} = \underline{0.1}; \mathcal{C} = 1.0$

Reduced ConsistencyModerate Case $\mathcal{L} = 1.0; \mathcal{C} = \underline{0.55}$ $\mathcal{L} = \underline{0.5}; \mathcal{C} = \underline{0.8}$

Reward ShapingAction BiasingControl SharingAdviseH[s, a]accumulated rewardB[s, a]human influence

$$R'(s,a) \leftarrow R(s,a) + B[s,a] \times H[s,a]$$

Information in feedback is input into the RL algorithm by adding it to the MDP reward.

Reward ShapingAction Biasing
-Control SharingAdviseH[s, a]accumulated rewardB[s, a]human influence

$$\operatorname{argmax}_{a} \hat{Q}(s, a) + \mathbf{B}[s, a] \times H[s, a]$$

Information in feedback is accumulated and used to bias the RL policy at decision making time.

$$P(a = \operatorname{argmax}_{a} H[s, a]) = \min(\mathbf{B}[s, a], 1.0)$$

The probability of choosing an action from the feedback policy is equal to the human influence value.

Reward Shaping

 $\hat{\mathcal{C}}$

Methods We Evaluated

Feedback is Policy Labels: Parameters

 $\pi_F(s, a)$ Stores the feedback policy.

Action Biasing

The estimated feedback consistency.

Control Sharing

Advise

Control Sharing

Action Biasing

 \mathcal{C} feedback consistency

Reward Shaping

Step 1:
$$\pi_F(s, a) \propto \mathcal{C}^{\Delta_{s,a}} (1 - \mathcal{C})^{\sum_{j \neq a} \Delta_{s,j}}$$

 $\Delta_{s,a}$ - difference between # right and # wrong labels.

Step 2:
$$\pi(s,a) \propto \pi_F(s,a) \times \pi_R(s,a)$$

Construct a separate policy from feedback, combine the feedback policy and the RL policy, and then sample it.

Advise

Experimental Setup Summary

Comparing Advise to Alternative Methods

Oral Qualifier

Learning with Ideal Feedback in Frogger

Comparing Advise to Alternative Methods

Reducing the Feedback Likelihood

Comparing Advise to Alternative Methods

Oral Qualifier

Reducing the Feedback Consistency

Comparing Advise to Alternative Methods

Moderate Likelihood and Consistency

Comparing Advise to Alternative Methods

We Observed Similar Trends in Pac-Man

BQL BQL + Action Biasing BQL + Control Sharing BQL + Reward Shaping BQL + **Advise**

A Quantitative Look at Performance

BQL + Action Biasing BQL + Control Sharing BQL + Reward Shaping BQL + **Advise**

	Ideal Case		Reduced Feedback		
	$(\mathcal{L} = 1.0, \mathcal{C} = 1.0)$		$(\mathcal{L}=0.1, \mathcal{C}=1.0)$		
	Pac-Man	Frogger	Pac-Man	Frogger	
I	0.58 ± 0.02	0.16 ± 0.05	0.16 ± 0.04	0.04 ± 0.06	
	0.34 ± 0.03	0.07 ± 0.06	0.01 ± 0.12	0.02 ± 0.07	
g	0.54 ± 0.02	0.11 ± 0.07	0.14 ± 0.04	0.03 ± 0.07	
	$\textbf{0.77} \pm \textbf{0.02}$	$\textbf{0.45} \pm \textbf{0.04}$	$\textbf{0.21} \pm \textbf{0.05}$	$\textbf{0.16} \pm \textbf{0.06}$	

	Reduced Consistency		Moderate Case	
	$(\mathcal{L} = 1.0, \mathcal{C} = 0.55)$		$(\mathcal{L}=0.5, \mathcal{C}=0.8)$	
	Pac-Man	Frogger	Pac-Man	Frogger
BQL + Action Biasing	-0.33 ± 0.17	0.05 ± 0.06	$\textbf{0.25} \pm \textbf{0.04}$	0.09 ± 0.06
BQL + Control Sharing	-2.87 ± 0.12	-0.32 ± 0.13	-0.18 ± 0.19	0.01 ± 0.07
BQL + Reward Shaping	-0.47 ± 0.30	0 ± 0.08	0.17 ± 0.12	0.05 ± 0.07
BQL + Advise	$\textbf{-0.01} \pm \textbf{0.11}$	0.02 ± 0.07	0.13 ± 0.08	$\textbf{0.22} \pm \textbf{0.06}$

A Follow-up Experiment

Action Biasing used an optimized conversion from feedback into reward.

r_h,-*r_h* Depends on: MDP reward the feedback consistency

Our next experiment tested how action biasing performed if we varied the value of *r*.

Oral Qualifier

How the Reward Parameter Affects Learning

Oral Qualifier

How the Reward Parameter Affects Learning

Another Follow-up Experiment

Reward Shaping, Action Biasing, and Control sharing used optimized human influence parameters.

b, *d* Depends on: the size of the domain the feedback consistency

Our next experiment varied the domain size to show that these parameters depend more on that than the information in human feedback.

Enlarging Frogger

Domain Size	4x4
States	160
Episodes to Converge	~300

6x6
33,360
~50,000

Oral Qualifier

How the Domain Size Affects Learning

Advise Parameters

It is clear that the other algorithms perform inferior to **Advise** with suboptimal parameter values, but what about **Advise?**

$\hat{\mathcal{C}}$ Depends on: The value of \mathcal{C} , the true feedback consistency

Our next experiment tested how well **Advise** performed with a suboptimal estimate of C.

Using an Inaccurate Estimate of C

Discussion: Summary of the experiments

- Control Sharing and Action Biasing depend on β which is decoupled from the information in each policy.
- Action Biasing depends on *r*, which is domain specific.
- Advise depends on C, its single input parameter.

Conclusion

- This work introduced *Policy Shaping*.
- Advise is comparable to or outperforms state of the art techniques for integrating human feedback with RL.
- We avoid ad hoc parameter settings and are robust to infrequent and inconsistent feedback.
- There are many directions for future work: credit assignment; how to estimate conline; etc.