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The Agent-Environment Interaction
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Integrating Human Feedback
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Adding the Feedback Channel

Blumberg et al.; 2002 Tenorio-Gonzalez et al.; 2010 Pilarski et al.; 2011Isbell et al.; 2001
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Doesn’t the RL Loop Already Encapsulate 
Human Feedback?
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It’s not so simple. 
(Thomaz and Breazeal; 2008)

 “The communication from the human teaching partner 
cannot be merged into one single reward signal.”
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Separating Feedback from MDP Reward

(e.g., Action Biasing and Control Sharing)
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The Hidden Step In These Methods
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The Hidden Step In These Methods
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into a value

• The conversion from feedback into a reward is ad hoc. 

• Identifying a good reward requires solving the learning 
problem beforehand, which defeats the purpose. 

• Feedback can have a delayed effect on exploration.

Reward Shaping, 
Action Biasing and Control Sharing

Agent
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Policy Shaping
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What These Labels Mean 
(assuming there’s a single optimal action per state)
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st at is “wrong”: The agent should cease exploration down the 
path through action at in state st.
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st at is “right”: No further exploration is needed in state st

What These Labels Mean 
(assuming there’s a single optimal action per state)
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“right” “right”

Feedback Consistency
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Feedback History for st at Noise in the feedback channel means we cannot 
simply prune actions from the search tree 

Here feedback has consistency    =0.9

(cf. Pradalier et al., 2003)
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“right” “right”

Information Theoretic ‘Pruning’
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DATA HYPOTHESES

st at is optimal

st at is suboptimal

BAYES RULE
P(D|H) P(H)

P(D)
P(H|D) =
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Advise

      I  - the difference between # right and # wrong labels

The probability the state-action pair, s,a, is optimal:

- the feedback consistency
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The Information Is Still Incompatible
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Top:         a probability distribution over hypotheses about 
which action is optimal. 

Bottom:   an estimate of the long—term expected discounted 
reward for a state—action pair.

Reinforcement  
Learning

Q-value
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Can We Get Probabilities From Q-values?

• We can estimate the probability an action is optimal using 
Pr( Q(s,a) > Q(s,!a)) 

• The uncertainty in a Q-value can be modeled using a 
normal distribution.

Q(s,a) (Dearden et al. 1998)
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Bayesian Q-learning 
(Dearden et al. 1998)

• Sample each distribution, and then take the 
max 100 times to obtain                               . 

• This gives: 

• Maintain parameters that specify a normal-gamma 
distribution for each state-action pair:

1 2 3 4
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Now The Signals Are Compatible
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Top:         a probability distribution over hypotheses about 
which action is optimal. 

Bottom:   a probability distribution over hypotheses about 
which action is optimal.

Bayesian 
Q-Learning
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Learning From Both Sources of Information

(Bailer-Jones and Smith. 2011.)
(Pradalier et al., 2003)

H is the hypothesis that        is optimal and         is suboptimal 
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Learning From Both Sources of Information

(Bailer-Jones and Smith. 2011.)
(Pradalier et al., 2003)
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The Complete Advise Algorithm
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Agent

Step 1:  Create the Human Feedback policy. 

Step 2:  Combine both policies into one.

BQL

Step 2
Advise
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Frogger Pac-Man

The Domains We Used
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The Domains We Used
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The Domains We Used

Frogger Pac-Man

States 
Actions per state 

Episodes to converge

160 
5 

~300

1890 
2-3 

~300
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Source of Human Feedback

human
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Source of Human Feedback

• Instead of humans, we used an oracle to provide feedback. 

• An oracle simulates the feedback from a real human. 

• The oracle was a database consisting of the optimal action 
for each state. 

• This allowed us to test several scenarios with different 
feedback likelihood and consistency.

Oracle
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The Four Scenarios We Tested

Ideal Case Reduced Feedback

Reduced Consistency Moderate Case
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Methods We Evaluated
Reward Shaping Action Biasing Control Sharing Advise

Feedback is Reward: Parameters

Stores the accumulated human reward.

Stores the human influence value.

The decay rate of           .

The amount           is incremented each time 
feedback is received for       .

Maps feedback to reward.,
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Methods We Evaluated
Reward Shaping Action Biasing Control Sharing Advise

Information in feedback is input into the RL algorithm 
by adding it to the MDP reward.

accumulated reward

human influence
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Methods We Evaluated
Reward Shaping Action Biasing Control Sharing Advise

Information in feedback is accumulated and used to 
bias the RL policy at decision making time.

accumulated reward

human influence
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Methods We Evaluated
Reward Shaping Action Biasing Control Sharing Advise

The probability of choosing an action from the 
feedback policy is equal to the human influence 
value.

accumulated reward

human influence
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Methods We Evaluated
Reward Shaping Action Biasing Control Sharing Advise

Feedback is Policy Labels: Parameters

Stores the feedback policy.

The estimated feedback consistency.
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Methods We Evaluated
Reward Shaping Action Biasing Control Sharing Advise

      I   - difference between # right and # wrong labels.

Construct a separate policy from feedback, combine 
the feedback policy and the RL policy, and then 
sample it.

Step 1:

Step 2:

feedback consistency
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Experimental Setup Summary

Domains Feedback Scenarios Methods

Reward Shaping

Action Biasing

Control Sharing

Advise

Oracle
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Domains Feedback Scenarios Methods

Reward Shaping

Action Biasing

Control Sharing

Advise

Comparing Advise to Alternative Methods

Oracle
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Learning with Ideal Feedback in Frogger
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Domains Feedback Scenarios Methods

Reward Shaping

Action Biasing

Control Sharing

Advise

Comparing Advise to Alternative Methods

Oracle
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Reducing the Feedback Likelihood
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Domains Feedback Scenarios Methods

Reward Shaping

Action Biasing

Control Sharing

Advise

Comparing Advise to Alternative Methods

Oracle
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Reducing the Feedback Consistency
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Domains Feedback Scenarios Methods

Reward Shaping

Action Biasing

Control Sharing

Advise

Comparing Advise to Alternative Methods

Oracle



Oral Qualifier

April 4, 2014

Moderate Likelihood and Consistency
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Domains Feedback Scenarios Methods

Reward Shaping

Action Biasing

Control Sharing

Advise

Comparing Advise to Alternative Methods

Oracle
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We Observed Similar Trends in Pac-Man

Ideal Case Likelihood Consistency Moderate
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A Quantitative Look at Performance
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A Follow-up Experiment

Depends on:  
 MDP reward 
 the feedback consistency

,

Action Biasing used an optimized conversion from feedback 
into reward.

Our next experiment tested how action biasing performed if 
we varied the value of r.
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How the Reward Parameter Affects Learning

Moderate Likelihood and Consistency Reducing the Feedback Consistency 

Value of Feedback

Best value for  
in this case

Best value for    
in this case
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Value of Feedback

Moderate Likelihood and Consistency Reducing the Feedback Consistency 

How the Reward Parameter Affects Learning

Best value for  
in this case

Best value for    
in this case
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Another Follow-up Experiment

Depends on: 
 the size of the domain 
 the feedback consistency

Reward Shaping, Action Biasing, and Control sharing used 
optimized human influence parameters.

Our next experiment varied the domain size to show that 
these parameters depend more on that than the information 
in human feedback. 

,
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Enlarging Frogger

Domain Size 
States 

Episodes to Converge

4x4 
160 

~300

6x6 
33,360 

~50,000
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How the Domain Size Affects Learning
4x4 Frogger 6x6 Frogger

4x4 Frogger 6x6 Frogger
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Advise Parameters

Depends on:  
 The value of    , the true feedback 
consistency

Our next experiment tested how well Advise performed with 
a suboptimal estimate of    .

It is clear that the other algorithms perform inferior to Advise 
with suboptimal parameter values, but what about Advise?
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Using an Inaccurate Estimate of C

Estimated Feedback Consistency
Overestimate 

True value 

Underestimate

Moderate Likelihood and Consistency 
Pac-Man Frogger
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Discussion: 
Summary of the experiments

• Control Sharing and Action Biasing depend 
on   , which is decoupled from the information in 
each policy. 

• Action Biasing depends on r, which is domain 
specific. 

• Advise depends on    , its single input 
parameter.
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Conclusion

• This work introduced Policy Shaping. 
• Advise is comparable to or outperforms state of 

the art techniques for integrating human feedback 
with RL. 

• We avoid ad hoc parameter settings and are 
robust to infrequent and inconsistent feedback. 

• There are many directions for future work: credit 
assignment; how to estimate    online; etc.


